
Modeling and Analysis of
Multi-Hop Control Networks

Rajeev Alur1, Alessandro D’Innocenzo1,2, Karl H. Johansson3, George J. Pappas1, Gera Weiss1

1University of Pennsylvania, Philadelphia PA
2University of L’Aquila, Italy

3Royal Institute of Technology, Stockholm, Sweden

Abstract—We propose a mathematical framework, inspired
by the WirelessHART specification, for modeling and analysing
multi-hop communication networks. The framework is designed
for systems consisting of multiple control loops closed over a
multi-hop communication network. We separate control, topol-
ogy, routing, and scheduling and propose formal syntax and
semantics for the dynamics of the composed system. The main
technical contribution of the paper is an explicit translation of
multi-hop control networks to switched systems. We describe a
Mathematica notebook that automates the translation of multi-
hop control networks to switched systems, and use this tool to
show how techniques for analysis of switched systems can be
used to address control and networking co-design challenges.

I. INTRODUCTION

Wireless communication is emerging in control applications

with main advantages being reduced installation costs and

increased flexibility, as well as ease of maintenance, debugging

and diagnostics. Control with wireless technologies typically

involves multiple communication hops for conveying infor-

mation from sensors to the controller and from the controller

to actuators. While offering many advantages, the use of

multi-hop networks for control is a challenge when it comes

to predictability. Motivated by this challenge, we propose a

formal modeling and analysis approach for multi-hop control

networks.

The challenges in designing and analyzing multi-hop control

networks are best explained by considering the recently devel-

oped WirelessHART standard as an example (see Section V).

The standard allows designers of wireless control networks

to distribute a synchronous communication schedule to all

nodes in a wireless control network. More specifically, time is

divided into slots of fixed length (10ms) and a schedule is an

assignment of nodes to send data in each slot. The standard

specifies a syntax for defining schedules and a mechanism to

apply them. However, the issue of designing schedules remains

a challenge for the engineers, and is currently done using

heuristics rules. To allow systematic methods for computing

and validating schedules, a clear formulation of the affect of

schedules on control performance is needed.

In this paper, we propose a formal model for analyzing the

joint dynamics induced by scheduling, routing and control.

Specifically, given a description of these separate aspects of the

system, we define a switched system that models the dynamics

of the composed multi-hop control network. The usefulness of

the model is demonstrated by confirming that it is compatible

with the WirelessHART specification and by showing that it

can be used to co-design control and scheduling. For example,

using an experimental tool presented in this paper, we show

that it is possible to resolve design parameters of a controller

by representing the dynamics of a multi-hop control network

symbolically (Section VI). As another example, we show that

our model allows compositional analysis based on the method

developed in [1], [2] (Section VI).

The paper is structured as follows. In section II we present

the structure of multi-hop control networks. Section III de-

scribes a formal syntax for specifying such systems and

Section IV gives formal semantics to that syntax. Then, in

Section V we discuss the relevance of the proposed modeling

approach to WirelessHART and in Section VI we present

an experimental tool that employs formal models of multi-

hop control networks to controller and scheduler design and

to verification. Section VII contains concluding remarks and

directions for future research.

RELATED WORK

When discussing the interaction of network and control

parameters, most research focuses on scheduling message and

sampling time assignment for sensors/actuators and controllers

interconnected by wired common-bus network [3]–[6], while

what is needed for modeling and analysing protocols such as

WirelessHART is an integrated framework for analysing/co-

designing control, routing, topology, and scheduling.

To our knowledge, the only formal model of wireless

sensor/actuator network is reported in [7]. In this paper, a

simulation environment that facilitates simulation of com-

puter nodes and communication networks interacting with the

continuous-time dynamics of the real world is presented. The

main difference between the work presented in [7] and the one

presented here is that here we propose a formal mathematical

model that allows more than just simulation. For example, we

show that our approach allows systematic mathematical design

techniques such as sensitivity and compositional analysis.

This work is also related to the growing research body on

switched system (see e.g. [8], [9]). As we show in this paper,

a multi-hop control network can be abstracted as a switched

system. While generic approaches that ignore the specific

structure of the switched system are applicable, we provide

a detailed model that identifies the contribution of specific

constituents to the dynamics. For example, the elaborated

15th IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/09 $25.00 © 2009 IEEE

DOI 10.1109/RTAS.2009.40

223

model allows us to apply the approach proposed in [1], [2]

for analyzing each control loop separately in a compositional

manner.

II. MULTI-HOP CONTROL NETWORKS

A Multi-hop control network, consists of a set of plants, a

controller, and nodes that communicate sensing and actuation

data from plants to controllers and back. The control scheme

Plant 1

Plant 2

1

2

3

4

5

6 7

Controller

Fig. 1. An example of a multi-hop control network. Circles represent
nodes with wireless communication capabilities, solid lines represent radio
connectivity and dashed lines represent actuation/sensing.

is illustrated in Figure 1, where seven wireless nodes are used

to measure information from two plants, send the information

to a controller and then pass it back and actuate the plants.

We assume that each node has radio and memory capabilities,

in order to receive, store and transmit data. Each plant is

considered as a dynamical system with a finite number of

scalar output signals (observable outputs) and scalar input

signals (control signals). Nodes in the network interact with

the plants through these signals, namely they measure the

observable outputs and provide actuation for the control inputs

(dotted arrows). For example, in Figure 1, node 1 has both

sensing and actuation capabilities for Plant 1 (bidirectional

dotted arrow); node 2 has only sensing capabilities for both

Plant 1 and Plant 2 (unidirectional dotted arrows to node 2

from both Plant 1 and Plant 2); and node 3 has only actuation

capabilities for Plant 2 (unidirectional dotted arrow from node

3 to Plant 2). In order to close the control loop, measured

data is sent from sensors to the controller through the wireless

network. The computation of the control signal is performed

in the controller, and control commands are sent from the

controller back to the actuators. The solid arrows that connect

the nodes model radio connectivity, i.e., a solid arrow is drawn

from node v1 to node v2 if and only if node v2 can receive

signals transmitted by node v1.

As detailed in Section III, we propose to describe multi-hop

control networks by: (1) A mathematical model of the control

loops, each consisting of a plant and a dynamic (stateful)

feedback algorithm for controlling it. (2) The topology of the

network, the location of the sensors/actuators, and the routing

strategy. Note that the feedback algorithms for all the plants

are typically executed by a single computer (controller), but

we choose to model them with the plant. In this text, when

we focus on one control loop, we will identify the controller

with the control algorithm and say that a control loop consists

of a plant and a controller, as is done in many control texts.

In Section IV, we formalize the semantics of multi-hop

control networks by defining a switched system. The semantics

of the model reflect data flow, as follows. A state of the system

is a snapshot of data stored in the nodes. Transitions consist

of copying data from nodes to nodes and of transformations

of the control algorithms and plants states. Because transitions

are governed by schedules, we propose to model the system

as a discrete-time switched system where the switching signal

is the communication and computation schedules. This model

allows analysis of multi-hop control networks using the grow-

ing arsenal of techniques from the switched systems theory

(see e.g. [9]).

III. SYNTAX

We propose the following formal syntax for describing a

multi-hop control network. See the subsections that follow the

definition for a more detailed description of each part.

Definition 1: A multi-hop control network is a tuple N =
〈D, G, Ω,R〉, where:

• D = {〈〈Ai, Bi, Ci〉, 〈Ãi, B̃i, C̃i〉〉}p
i=1 models the control

loops. Each control loop in D is modeled by a pair of

triplets of matrices. The first triplet in each pair defines

the dynamics of the plant and the second triplet defines

the dynamic of the control algorithm, both in terms of

matrices of Linear Time Invariant (LTI) systems. The

number of columns in Bi must be the same as the

number of rows in C̃i, which is the number of inputs

to the plant. Similarly, the number of rows in Ci must

be the same as the number of columns in B̃i, which is

the number of measurable outputs from the plant. Let

I = ∪p
i=1{yi,1. . . . , yi,mi} be the set of input signals for

the plants, where mi is the number of columns in Bi

(rows in C̃i). Let O = ∪p
i=1{ui,1. . . . , ui,li} be the set of

output signals from the plants, where li is the number of

rows in Ci (columns in B̃i).

• G = 〈V,E〉 is a directed graph that models the radio

connectivity of the network, where vertices are nodes of

the network, and an edge from v1 to v2 means that v2 can

receive messages transmitted by v1. We denote with vc

the special node of V that corresponds to the controller.

Let P be the set of simple paths in G that start or end

with the controller.;

• Ω: I∪O → V assigns to every input and output signal the

node that implements, respectively, sensing or actuation;

• R : I∪O → 2P is a map, which associates to each input

(resp. output) signal a set of allowed simple paths from

(resp. to) the controller. We require that all elements in

R(y) (resp. R(u)) start (resp. end) with Ω(y) (resp.Ω(u))
and end (resp. start) with the controller, for all y ∈ I (resp.

u ∈ O).

A. Control Loops

The variable D, in the above definition, models the dy-

namics of the controlled plant and of the feedback algorithm

224

associated with it using the matrices Ai, Bi, Ci, Ãi, B̃i and C̃i.

The meaning of this model is illustrated in Figure 2. Namely,

each triplet 〈Ai, Bi, Ci〉 models an LTI plant and each triplet

〈Ãi, B̃i, C̃i〉 models an LTI feedback block, interconnected

with the plant in the usual way.

xi(t + 1) = Aix(t) + Biu(t)
yi(t) = Cix(t)

Plant

x̃i(t + 1) = Ãix̃i(t) + B̃iũi(t)
ỹi(t) = C̃ix̃i(t)

Controller

ũi = yiui = ỹi

Fig. 2. A model of one control loop.

Note that the figure depicts a direct interconnection of the

plant with the controller while, in reality, the wireless network

introduces both measurement and actuation delays. We will

model these delays later, based on the topology of the wireless

network and the communication and computation schedules.

B. Radio connectivity graph

The graph G, in the definition of a multi-hop control

network, models the ability of nodes in the wireless network

to receive signals sent by others. Formally, the vertices of the

graph are the nodes in the network and a directed edge from

node v1 to node v2 exists if and only if v2 can receive signals

sent by v1. For example, the radio connectivity graph for the

multi-hop control networks in Figure 1 is depicted in Figure 3.

1

2

3

4

5

6 7

Controller

Fig. 3. Radio connectivity graph. Vertices are nodes in the wireless network.
A directed edge from v1 to v2 says that v2 can receive signals from v1.

Plants are not present in the radio connectivity graph

because they are not active nodes in the wireless network.

C. Sensors and actuators

The function Ω: I ∪ O → V formally defines which nodes

of the network are sensors and/or actuators. Moreover, it

associates sensors and actuators to the components of the

output and input signals of the plant. As an example, in

the system illustrated in Figure 4 the function Ω is depicted

with dotted arrows, and is formally defined by Ω(u11) =

1, Ω(u21) = 3, Ω(y11) = 1, Ω(y12) = Ω(y21) = 2. where

I = {u11, u21} and O = {y11, y12, y21}.

Plant 1

Plant 2

1

2

3

4

5

6 7

Controller

y11

u11

y12

y21

u21

y11

y11u11

u11

y12 y12

y21 y21

u21 u21

u21

Fig. 4. A static routing, expressed as a set of paths from sensors to the
controller and from the controller to actuators.

The signal ui,j (resp. yi,j) denotes the jth output (resp.

input) of the ith plant. With this naming convention, Ω maps

rows (resp. columns) of the B matrices (resp. C matrices) to

nodes of the wireless network. Specifically, if Ω(yi,j) = k and

ci,j is the jth row of Ci then the data at node k is ci,jxi, where

xi is the state of the ith plant. Similarly, if Ω(ui,j) = k and bi,j

is the jth column of Bi then the scalar at node k is multiplied

by bi,j and added to xi (every time step). These equations

formalize the dynamics of the sensors and the actuators.

D. Routing

A (static) routing in a multi-hop control network is a set

of acyclic paths from sensors to the controller and from the

controller to actuators. For example, in Figure 4, each sensor

is connected to the controller by one path and the controller

is connected to each actuator by a path.

We propose two possible use cases with routing. The first

use case is when the designer of the network specifies static

routing as a set of allowed paths for each pair sensor-controller

and controller-actuator. In this case, data can only flow along

the specified paths. The second use case is when no explicit

routing is specified, namely the user does not define R. In this

case, we assume a default routing R by considering the set of

all acyclic paths from each sensor to the controller, and from

the controller to each actuator.

IV. SEMANTICS

In an ideal control loop, the input and output signals

of plants and controllers are directly interconnected, namely

u(t) = ỹ(t), y(t) = ũ(t), as depicted in Figure 2 above.

However, when a multi-hop network is used to transport mea-

sured data from sensors to the controller, and actuation data

from the controller to actuators, the semantics of the closed

loop system need to incorporate the delays induced by the

network. In particular, we need to define (i) how the measured

and control data flow through the network (communication

schedule), and (ii) how the controller computes the control

commands (computation schedule).

225

A. Memory Slots

As the dynamics of multi-hop control networks are based

on modeling information flow from sensors to the controller

and from the controller to actuators, the first step towards

formal semantics is an identification of the memory slots

(registers) that hold that information. Specifically, each node of

the network has a memory slot for each input or output signal

designated for keeping the information passed to the node

regarding the signal. Formally, the vertices of the memory

slots graph are pairs 〈v, σ〉 where v is a node and σ is a signal.

The edges of the memory slots graph reflect information flow

channels. Specifically, there is an edge from 〈v1, σ〉 to 〈v2, σ〉
iff v1 = v2 or if v1 and v2 are consecutive nodes on some

routing path of the signal σ. Namely, an edge in the graph

shows where the information in each memory slot can flow – it

can stay in the same memory slot or be moved to a consecutive

one.

Definition 2: Given a multi-hop control network with net-

work topology G = 〈V,E〉 and routing R : I ∪ O →
2P, we define the graph GR = 〈VR, Eself ∪ Eroute〉 where

VR = V × (I ∪ O), Eself = {〈〈v, σ〉, 〈v, σ〉〉 : v ∈
V, σ ∈ I ∪ O}, and Eroute = {〈〈v1, σ〉, 〈v2, σ〉

〉
: σ ∈ I ∪

O, v1 and v2 are consecutive on some r ∈ R(σ)}.

To avoid handling unneeded memory slots, we consider

(without loss of generality) only the sub graph of GR reachable

from/to the controller.

Plant 1

Plant 2

1, y11

1, u11

2, y12

2, y21

3, u21

4, y11

4, u11

5, y12

5, y21

6, u21 7, u21

C, y11

C, u11

C, y12

C, y21

C, u21

Cont. 1

Cont. 2

ΩPlant ΩCon

Fig. 5. The graph GR obtained by splitting each node to memory slots
according to the routing scheme. The self loops are omitted for clearness of
the picture.

The function Ω, defined in Section III-D above, which

maps each input/output signal to a node, can be automatically

extended to the function ΩPlant which maps signals to memory

slots (because each memory slot is mapped to a path which

maps to a unique signal). Similarly, we will also use the

function ΩCon that maps signals of the controller to memory

slots. These functions are depicted in Figure 5.

B. Controllers as Switched Systems

In Section III-A we defined controllers as linear time

invariant dynamical systems. Semantically, however, we think

of them as linear switched systems. The main reason for this

generalization is to allow controllers to collect data before

the actual control computation is executed. In particular,

according to the dependence between each control signal and

the measured data, we want to allow that any element of the

control vector can be computed separately, when the relevant

subset of measurements is ready. This requires coordinating

(co-scheduling) computations and communication. Another

motivation for modeling the controllers as switched systems

is to allow analysis of systems with limited computational

resources, where controllers need to operate in “light” mode

some of the time, e.g. because other control loops need

CPU resources. By defining the dynamics of the controller as

switched system, we also allow modelling control techniques

such as Kalman filters and Luenberger observers. To accom-

modate for such generalizations, all the analysis methods that

we propose in this paper are independent of the structure of

the controller (number of modes, dimensions, etc.).

Similar to what we proposed for routing, we propose two

use-cases for handling conversion of controllers to switched

systems. The first use-case is when an explicit model of the

controller as a switched system is provided, and the second

use-case is when only a linear time-invariant model of the

controller is specified. The first case requires more modeling

efforts, but it allows more general analysis of communica-

tion/computation co-scheduling.

For the second case, used in all of the example in this

paper, we propose an implicit transformation of the controller

from a time invariant system to a switched system as follows.

Let 〈Ã, B̃, C̃〉 be a formulation of a feedback algorithm as

a linear time invariant system. We define a switched system

with the two modes M = {Idle, Active}. The Idle mode

is defined by the matrices Ã(Idle) := 1 (identity matrix),

B̃(Idle) := 0 (zero matrix) and C̃(Idle) := C̃. The Active
mode is defined by Ã(Active) = Ã, B̃(Active) := B̃ and

C̃(Active) := C̃. This definition models that the computation

of the state variables of the controller does not have to be

applied at every step, and that the state variables remain

constant while the computation is not scheduled.

Mode switches of the controller are coordinated by the

computation schedule described in the following section.

C. Scheduling

We propose a formal syntax for describing communication

and computation schedule for a multi-hop control network:

Definition 3: Given a multi-hop control network N, let

GR = 〈VR, ER〉 be the memory slots graph as defined above.

• A communication schedule is a function η : N → 2ER ,

that associates to each time t a set of edges of the memory

slot graph. The intended meaning of this schedule is that

〈v1, v2〉 ∈ η(t) iff at time t the content of the memory

slot v1 is copied to the memory slot v2 (i.e. the physical

node that maintains v1 sends data to the physical node

that maintains v2). We require that if 〈v1, v2〉 ∈ η(t) then

for every v3 �= v1, 〈v3, v2〉 /∈ η(t). Namely we do not

allow assignment of two values to the same memory slot.

• A computation schedule for the ith control loop (cor-

responding to the ith entry in D of Definition 1) is a

function μi : N → Mi where Mi is the set of modes of

the switched-system that model the controller of the ith

226

control loop, as described in Section IV-B. The meaning

of this function is that μi(t) defines the mode of the

controller at time t.

In Section VI, below, we present a compositional analysis

based on representing sets of communication schedules as

regular languages over the alphabet 2ER . In this context, one

can also represent the set of feasible schedules in the same

form. For example, if the transmission of data from node

v1 to node v2 uses a mutually exclusive resource (e.g. radio

frequency) shared with the transmission of data from node v3

to node v4 then the set of feasible schedules should be a sub-

language of {S ⊂ ER : 〈v1, v2〉 /∈ S ∨ 〈v3, v4〉 /∈ S}∗ (where

* is the Kleene star).

D. Multi-Hop Control Networks as Switched Systems

Based on the syntactical definition of a multi-hop control

network and the schedules, we now define dynamics as

switched systems. To allow compositional analysis, we model

each control loop separately (plant, controller, and the data

flow between them). Let i be the identifier of that control loop

(corresponding to its index in the array D in Definition 1). We

use the descriptions of the plant and the control algorithm

as LTI systems, modeled by the matrices 〈Ai, Bi, Ci〉 and

〈Ãi, B̃i, C̃i〉 respectively. Recall that, in Section IV-B, we

transformed the control algorithm to a switched linear system

with the parametrized matrices 〈Ãi(·), B̃i(·), C̃i(·)〉. The state

of the switched system that models the control loop is a

vector x = 〈xp, xv1 , . . . , xvn
, xc〉 where xp is the state of

the plant, 〈xv1 , . . . , xvn
〉 is a vector representing the values of

the memory slots (in some fixed order), and xc is the state of

the controller. The evolutions of the different parts of the state

are as follows:

• Using the matrices Ai, Bi from the definition of the plant

as LTI system, we write xp(t + 1) = Aixp(t) + Biu(t)
and u(t) = 〈xΩPlant(u1)(t), . . . , xΩPlant(um)(t)〉 where

u1, . . . , um ∈ I are the input signals of the plant and

ΩPlant is the function that maps signals of the plant

to sensor/actuator memory slots, i.e. the inputs to the

plant are the values stored in the actuators memory slots.

Similarly, 〈xΩPlant(y1)(t), . . . , xΩPlant(yl)(t)〉 = Cixp(t)
where y1, . . . , yl are the output signals of the plant, i.e.,

the outputs from the plant are stored in the memory slots

of the sensors.

• The rest of the memory slots are updated according to

the communication schedule. Specifically, xv(n + 1) =∑
〈v′,v〉∈μ(t) xv′(t) i.e., the data in each memory slot is

updated to be the sum of the values of all the sources of

the incoming edges to the node. In this paper, we insist

that each node has at most one incoming edge which

means that each destination of an edge is assigned with

the value stored in the source of the edge.

• For the controller, we write xc(t + 1) = Ãi(η(t))xc(t) +
B̃i(η(t))ỹ(t) and ỹ(t) = 〈xΩCon(y1)(t), . . . , xΩCon(yl)(t)〉
where y1, . . . , yl ∈ O are the output signals and ΩCon is

the function that maps signals of the controller to mem-

ory slots. Similarly, 〈xΩCon(u1)(t), . . . , xΩCon(um)(t)〉 =
C̃i(η(t))xc(t) where u1, . . . , ul ∈ I are the input signals.

The following two definitions formalize these dynamics as

a linear switched system. The dynamics of the memory slots

are modeled using the adjacency matrix of the graph induced

by the communication schedule. The state of the system is

x = 〈xp, xv1 , . . . , xvn
, xc〉.

Definition 4: Given a multi-hop control network N, con-

sider a plant 〈Ãi, Bi, Ci〉, and the corresponding switched

linear controller 〈Ãi(·), B̃i(·), C̃i(·)〉. For any subset e ⊆ ER

representing a sub-graph of the memory slots graph, and for

any controller mode m ∈ M , we define

Â(e, m) :=

⎛
⎜⎜⎜⎜⎝

Ai Bi · OPlant 0

IT
Plant · Ci Adj(〈VR, e〉)T OT

Con · C̃i(m)

0 B̃i(m) · ICon Ãi(m)

⎞
⎟⎟⎟⎟⎠

where VR = {v1, . . . , v|VR|}, I = {i1, . . . , i|I|} and O =
{o1, . . . , o|O|} are respectively enumerations of memory slots,

inputs and outputs, Adj(〈VR, e〉)T is the transposed adjacency

matrix of the sub-graph induced by e on 〈VR, ER〉, and Ix

(resp. Ox) is a {0, 1} matrix of matching size with the entry

Ix(r, c) (resp. Ox(r, c)) being one if and only if Ωx(vr) = ic
(resp. Ωx(vr) = oc), for x ∈ {Plant, Con}.

Definition 5: The dynamics of the control loop are modeled

by the switched system

x(t + 1) = Â(s(t))x(t),

where the communication and computation schedule s(t) =
〈η(t), μ(t)〉 is the switching signal.

Note the structure of the matrix Â(·, ·) that explicitly

expresses the interplay between the components of a multi-

hop control network. Specifically, the dynamics of the plant

are at the top left, the dynamics of the controller are at the

bottom right and the adjacency matrix of the sub-graph of the

memory slots graph induced by the communication schedule

is at the center. This model allows to use techniques from

the theory of switched systems to analyze multi-hop control

networks.

By combining the models of the individual loops, one can

obtain a model of the whole multi-hop control network. For

example, in Section VI we show how the methods presented

in [1], [2], [10] are applied in the context of multi-hop

control networks. Specifically, the theory of formal languages

is applied for answering competing resource requirements of

the loops to achieve stability of the whole system. The ability

to analyze systems in a compositional manner is enabled by

modeling each loop separately.

V. WIRELESSHART AS A MULTI-HOP CONTROL

NETWORK

In this section, we show that a multi-hop control network

implemented according to the WirelessHART specification

can be modeled using the mathematical framework described

227

above. Our framework allows modelling the MAC layer (com-

munication scheduling) and the Network layer (routing) of

WirelessHART.

MAC layer. WirelessHART access to the channel is time

slotted [11], where each slot is 10ms. A series of time slots

for a given frequency channel forms a superframe (Figure

6). Slots of a superframe can be either dedicated to one

Superframe

Cycle n − 1 Cycle n Cycle n + 1

Fig. 6. Superframe structure

node or shared by several nodes: dedicated slots use TDMA

for medium access, while shared slots use CSMA/CA for

medium access. WirelessHART also enables channel hopping

to avoid interference and to reduce multi-path fading. Latency

requirements are addressed by scheduling the communication

in such a way that packets will reach their destination in

time, considering multiple hops, possible retransmissions, and

alternate routes through the network.

Network layer. Routing can be implemented in two con-

figurations: graph routing and source routing. Graph rout-

ing provides, for each pair of nodes (one source and one

destination) a set of paths connecting the two nodes as an

acyclic directed graph associated to the destination node. In

a properly configured network, and when permitted by the

radio connectivity graph, all nodes must have at least two

nodes in the graph through which they may send packets

(ensuring redundancy and enhancing reliability). A typical

routing graph for graph routing is illustrated in Figure 7. In

source routing, only one path is associated to each pair of

nodes. If an intermediate link fails, the packet is lost. For this

reason, source routing is much less reliable then graph routing,

and the WirelessHART specification does not recommend to

use it for control purposes. The specification contains other

guidelines for the use of wireless networks in critical control

systems. Another example: The maximum distance from a

node to the gateway in such application should not exceed 4

hops. These guidelines are meant to guarantee that networking

delays do not harm control performance (e.g. stability). An

alternative approach can be to formally verify the composed

system using the model proposed in this paper.

A WirelessHART system as a multi-hop control network.
We now define the constraints induced by the WirelessHART

specification on a multi-hop control network as described in

Definition 1. We will consider in our framework superframes

that have only dedicated slots, and not shared slots. We will

show that our framework can take into account dedicated

slots with slight modifications. Given a multi-hop control

network N = 〈D,G, Ω, R〉 as in Definition 1, and a schedule

s = 〈η, μ1, . . . , μp〉 as in Definition 3, an implementation

of such networked system according to the WirelessHART

S4

A3

A4

S2

S3

A2

S1

A1

G

Fig. 7. Graph routing for the destination node G (gateway)

specifications must satisfy the following constraints:

Routing Constraints. Routing R must be defined so that

any node, when needs to route data, has at least two choices

for routing in the set of neighbors (if the radio connectivity

graph allows this). Formally, given any input or output signal

l ∈ I × O, any routing r = v1, · · · , vm ∈ R(l), and any

i ∈ {1, · · · , m}, there exists a routing r′ = v′1, · · · , v′m′ ∈
R(l), j ∈ {1, · · · , m′} such that v1 = v′1, vm = v′m′ , vi = v′j ,

and vi+1 �= v′j+1.

Communication Schedule Constraints. Communication

Schedule η is required to be periodic, namely a superframe

of finite length must be defined for each frequency channel.

Let F be the number of available frequency channels: we

define η = 〈η1, · · · , ηF 〉 the set of communication schedules.

Each frequency channel can be characterized by a different

number Ni of time slots. For this reason, we can define

ηi : {1, · · · , Ni} → 2ER . This implies that the schedule η
is periodic, with period given by the least common multiple

N of the set {Ni : i = 1, · · · , F}. We infer that only

one physical node can transmit in one time slot, for each

frequency channel. That is, given a communication schedule

ηi(k) = {e1, · · · , em}, then the sources of all scheduled edges

are memory slots that correspond to the same physical node.

We are thus assuming that no more than one physical node can

transmit simultaneously without interfering with the others,

namely each node interferes with any other node, and the

interference graph is fully connected. However, in order to

allow dedicated slots, it is possible to remove this assumption

with a slight modification to the above constraint.

Data Flow and Control Computation Constraint. We

require that all measured data is routed to the controller

(gateway), that the controller computation is scheduled only

when all measured data reach the controller, and that all

control data is routed to the actuators, within the time duration

of the superframe. Moreover, each possible routing must be

scheduled, in order to permit to each node to decide where

to route the data. We recall that R(i) is the set of routing

paths from sensor i to the controller, and R(o) is the set

of routing paths from the controller to actuator o. Let N be

the length of the superframe. Let us consider without loss of

generality a system N characterized by only one plant: we

require that for any pair 〈i, o〉 ∈ I × O, any routing path

ri = {ri(j)}mi
j=1 ∈ R(i) and ro = {ro(j)}mo

j=1 ∈ R(o), there

exist integers 0 < ki(1) < · · · < ki(mi − 1) < kc < ko(1) <

228

· · · < ko(mo − 1) < N such that:

(i) ∀j ∈ {1, · · · , mi − 1}, η(ki(j)) = (ri(j), ri(j + 1)),
(ii) μ(kc) = Active,
(iii) ∀j ∈ {1, · · · , mo − 1}, η(ko(j)) = (ro(j), ro(j + 1)).

Interaction between scheduling and routing. A funda-

mental feature that characterizes WirelessHART is the inter-

action between the scheduling (superframe) and the routing

(routing graph), and the associated data flow in the network.

According to the specification, for each frequency channel a

superframe must be defined. Moreover, for each slot, only one

node is allowed to transmit, and only a subset of nodes is

allowed to receive. The superframe must be designed so that

all sensor data reach the gateway, and all control data reach the

actuators within the duration of the superframe. We recall now

that, according to the routing graph, each node has at least 2

neighbor choices to route a packet, for any destination node.

Moreover, in order to allow each node to choose a routing

path according to a local decision algorithm, it is necessary

to schedule the nodes’ transmissions so that any path can be

used, namely so that each node can locally decide the next

destination for routing his packet among the choices given

by the routing graph. This means that such a definition of

the superframe does not deterministically characterize the data

flow in the network. The following example aims to clarify this

concept, that is crucial for interpreting the semantics of data

flow associated to transmission scheduling and graph routing:

1

2

3

4

(a) Routing graph of node 4

1 → 2 1 → 3 2 → 4 3 → 4 · · ·
(b) Superframe schedule

1 → 2 2 → 4 · · ·
(c) Effective schedule, case 1

1 → 3 3 → 4 · · ·
(d) Effective schedule, case 2

Fig. 8. Scheduling and routing of Example 1

Example 1: Node 1 needs to route a packet to node 4. Fig-

ure 8 illustrates the routing graph associated to the destination

node 4. If node 1 tries to transmit data to node 2 and the

transmission fails (no acknowledgement packet is received),

then in the next superframe node 1 tries to send data to node

3. To allow this, we need to schedule data transmission both

for the pair 〈1, 2〉 and the pair 〈1, 3〉. Moreover, to allow data

transmission to node 4 both when node 2 or node 3 has been

involved in the routing, we need to schedule data transmission

both for the pair 〈2, 4〉 and the pair 〈3, 4〉, as illustrated in

Figure 8. This example clearly shows that a scheduling is not

associated to a deterministic data flow in the network, but it is

associated to a set of possible data flows that depend on failure

of nodes and transmission errors. In Figure 8 we illustrate the

superframe schedule and the two possible schedules that can

effectively occur in the network, according to the decision of

node 1.

It is clear that, given a schedule s of the superframe, the

communication schedule that occurs in each superframe is

not deterministically identified. We define the set L(s) of all

communication schedules that can non-deterministically occur

for any superframe. As a first remark, notice that since a

WirelessHART schedule is periodic over the length N of the

superframe, then s can be expressed as a word of length N .

Moreover, notice that every schedule s′ ∈ L(s) corresponds

to one choice of routing path for any pair sensor-controller

and controller-actuator. For this reason, we can characterize

the cardinality of L(s) as follows:

|L(s)| =
∏
i∈I

|R(i)| ·
∏
o∈O

|R(o)|,

where |R(i)| is the number of routing paths from sensor i to

the controller, and |R(o)| is the number of routing paths from

the controller to actuator o. For this reason, L(s) is a finite

language of finite words of length N .

The translation from s to L(s) is trivial: for each possible

combination of routing paths, the effective schedule s′ can

be obtained from s by only keeping transmission schedule

of edges that correspond to the considered routing paths.

All other transmission schedules are removed. Iterating this

procedure for all combinations of routing paths, the set L(s)
is defined.

Let be given a multi-hop control network N, and a schedule

s = 〈η, μ〉 that allows each node to locally decide the next

destination for routing his packet among the choices given by

the routing graph. Let N be the length of the superframe, we

define for each s′ ∈ L(s)

Â(s′) = Â(s′(N)) · Â(s′(N − 1)) · · · Â(s′(1))

the matrix that corresponds to the dynamics of the system over

the period of the superframe, when the effective schedule s′

occurs. Then the dynamics of the control loop are modeled by

the switching system

x(N(t + 1)) = Â(s′(Nt))x(Nt), s′(Nt) ∈ L(s),

where s′(Nt) is a non-deterministic switching signal that takes

value in L(s), for each superframe period N . It is clear that,

if |R(i)| = |R(o)| = 1 for any pair (i, o) ∈ I ∪ O, then

L(s) = {s} and the system is deterministic.

VI. ANALYSIS TOOLS AND EXAMPLES

To experiment with the proposed modeling approach, we

implemented a Mathematica [12] based tool supporting it. The

tool takes multi-hop control network models and transforms

229

Control Loops

Plant@1D = 8Ap1, Bp1, Cp1<;

Controller@1D = 8Ac1, Bc1, Cc1<;

Plant@2D = 8Ap2, Bp2, Cp2<;

Controller@2D = 8Ac2, Bc2, Cc2<;

loops = 88Plant@1D, Controller@1D<, 8Plant@2D, Controller@2D<<;

Wireless Network

topology :=
expBiDi@81 ¨ 4, 4 ¨ 5, 4 ¨ C, 2 ¨ 5, 5 ¨ C, 3 ¨ 6, 6 ¨ 7, 7 ¨ C<D

Routing

routing@y1,1D = 881, 4, C<<;

routing@y1,2D = 882, 5, C<<;

routing@u1,1D = 88C, 4, 1<<;

routing@y2,1D = 882, 5, C<< ;

routing@u2,1D = 88C, 7, 6, 3<<;

Obtaining the Switched System

A function that maps ERä{Idle,Active} to matrices that model modes of the switched system

SW = SwitchedSystem1@loops, topology, routingD;

Fig. 9. A description of the multi-hop control network discussed in
Section III and a computation of the corresponding switched system with
the Mathematica based tool.

them to switched systems.. In this section we describe the tool,

demonstrate analysis techniques and present some experimen-

tal data.

A typical usage scenario

A typical use of the tool is by composing a Mathematica

notebook such as the one outlined in Figure 9. We use a

syntax, similar to the one described in Section III, to define the

system. Once the definitions of the loops, network topology

and the routing are given, one can automatically compute

the switched system, described in Section IV-D, using the

functions SwitchedSysteml[loops, topology, routing]. The

switched system, assigned to the variable SW, can then be

analyzed, as shown in the following examples.

First example: Fixing a schedule and designing the controller
accordingly

As a first example of how a formal model of a multi-hop

control network can be used, we show a control design based

on it. Consider the network depicted in Figure 3 where the

first plant is a double integrator, modeled by the equation

ẋ =
(

0 1
0 0

)
x +

(
0
1

)

with output, y = x. When sampling with time-step (sampling

interval) h, the discrete-time system is

x+ =
(

0 h
0 1

)
x +

(
h2/2

h

)
.

For the sake of the example, we choose h = 1/20.

The approach that we propose in this example is to fix a

schedule for the system and design a controller that stabilizes

the plant even with the delays induced by the network. To

that end, we start with the cyclic schedule whose cycle is the

following communication and computation sequences. As a

communication schedule (i.e. a sequence of sets of edges of

the memory slots graph) we choose:

〈∅, {〈1, y1,1〉 → 〈4, y1,1〉}, {〈2, y1,2〉 → 〈5, y1,2〉},
{〈4, y1,1〉 → 〈C, y1,1〉}, {〈5, y1,2〉 → 〈C, y1,2〉}, ∅,
∅, {〈C, u1,1〉 → 〈4, u1,1〉}, {〈4, u1,1〉 → 〈1, u1,1〉}, ∅〉

As a computation schedule (i.e. a sequence of modes of the

controller) we choose:

〈Idle, Idle, Idle, Idle, Idle, Active, Idle, Idle, Idle, Idle〉.
This pair of schedules model sending data from the plant to

the controller, computing the control signal, and sending the

result of the computation back to the actuator. These schedules

are assumed to repeat periodically.

Towards a controller design, we first fix the matrices

of the controller and leave the values of some entries as

design parameters. Then, we use the Mathematica based

tool for assigning values to these parameters. Specifically,

the dynamics of the controller are defined by the equations

Ac = (K3); Bc = (K1, K2); Cc = (1) where K1, K2 and

K3 are scalars, left as design parameters. To assign values

to the parameters we compute the matrix CycleM, as shown

in Figure 10. This matrix is the product of the matrices

M[i] that model the dynamics of each step of the schedule

(obtained from the switched system SW computed by the code

in Figure 9). The product, assigned to the variable CyclicM,

models the transformation of the state of the system through

a cycle of the schedule.

As shown is Figure 10, the parameters K1, K2 and K3

are resolved by assigning the poles of the matrix CyclicM.

Because this matrix models the dynamics of the system

through a cycle of the schedule, assigning its eigenvalues to

be contained in the unit ball (of the complex plane) assures

stability.

Second example: Verifying stability under non-deterministic
schedules

As discussed in Section IV-D, scheduling in wireless con-

trol networks may not be deterministic. As an example, we

consider a time varying scheduling constraint for the network

depicted in Figure 3. Specifically, we assume that some of

the times it is possible to send data from both nodes 1

and 2 simultaneously (e.g. because two radio frequencies

are available) and some of the times data has to be sent

sequentially, from 1 to 4 first and then from 2 to 5. While

both the schedule that applies sequential messages and the

schedule that applies parallel messages are stable (as can be

verified by computing the eigenvalues of matrices similar to

CycleM shown in Figure 10) it does not necessarily mean that

any switching between them is stable (see e.g. [9]).

To guaranty stability, we apply a sufficient condition for

stability of switched systems to verify that switching arbitrarily

between the two schedules is safe. Specifically, we verify that

230

Computting dynamics of a schedule

commSch � ���, ��1, y1,1� � �4, y1,1��,
��2, y1,2� � �5, y1,2��, ��4, y1,1� � �C, y1,1��,
��5, y1,2� � �C, y1,2��, ��, ��, ��C, u1,1� � �4, u1,1��,
��4, u1,1� � �1, u1,1��, ���;

compSch � �Idle, Idle, Idle, Idle, Idle, Active,
Idle, Idle, Idle, Idle�;

M�i�� :� SW�commSch�i�, compSch�i��
CycleM � M�10�.M�9�.M�8�.M�7�.M�6�.M�5�.M�4�.

M�3�.M�2�.M�1�;

Solving the design parameters K1, K2 and K3

sol �
Solve�Eigenvalues�CycleM� �
�0, 0, 0, 0, 0, 0, 0, 0, 0, 1�10, 2�10, 3�10�,
�K1, K2, K3��

��K1 � �
504

25
, K2 � �

3452

125
, K3 �

3

500
��

Fig. 10. Computation of matrix representing dynamics of a schedule and
using it to assign values to design parameters.

‖Cσ(7) · · ·Cσ(1)‖ < 1 for every σ ∈ {1, 2}7 where C1 and

C2 are matrices modeling the transformation of state variables

through the first and the second schedule, respectively. This is,

of course, a sufficient condition for stability (even exponential

stability) under arbitrary switching, because it implies that

every seven steps are contracting. The Mathematica code for

this example is given in Figure 11.

Third example: Using compositional analysis for schedules
design

One advantage of our modeling approach is that, because

dynamics are defined for each control loop separately, it

allows compositional analysis. As an example, we show how

a system comprising of two control loops is analyzed, in a

compositional manner, to obtain a joint schedule that renders

both loops stable.

Consider the network depicted in Figure 12. Assume that

both plants are double integrators with dynamics and controller

as described above (in the first example of this section).

Assume also that at most one node can send data at any time

slot.

The design approach that we demonstrate in this example

is as follows. First, we analyze each control loop separately to

obtain scheduling constraints in the form of regular languages.

Then, we use formal-languages based algorithms to compute

the intersection of the constraints and obtain a joint schedule

that is safe for both control loops.

Figure 13 shows the code for applying the compositional

approach to schedule design. We use the Automata [13]

package for Mathematica for formal languages manipulation.

The first part of the code instantiates an automaton for each

control loop, as follows. A set of schedules is obtained by

all interleavings of idle steps into a base schedule, and an

automaton is constructed whose language is the interleaved

schedules that are stable.

Definition of two schedules and verification that both are stable

commSche�1� � ���, ��1, y1,1� � �4, y1,1��,
��2, y1,2� � �5, y1,2��, ��4, y1,1� � �C, y1,1��,
��5, y1,2� � �C, y1,2��, ��, ��, ��C, u1,1� � �4, u1,1��,
��4, u1,1� � �1, u1,1��, ���;

compSche�1� � �Idle, Idle, Idle, Idle, Idle, Active,
Idle, Idle, Idle, Idle�;

commSche�2� �
���, ��1, y1,1� � �4, y1,1�, �2, y1,2� � �5, y1,2��,
��4, y1,1� � �C, y1,1��, ��5, y1,2� � �C, y1,2��, ��,
��, ��C, u1,1� � �4, u1,1��, ��4, u1,1� � �1, u1,1��, ���;

compSche�2� � �Idle, Idle, Idle, Idle, Active, Idle,
Idle, Idle, Idle�;

Mn��i�� :� SW�commSche�n��i�, compSche�n��i�� �. sol�1�

CM�1� � M1�10�.M1�9�.M1�8�.M1�7�.M1�6�.M1�5�.M1�4�.
M1�3�.M1�2�.M1�1�;

CM�2� � M2�9�.M2�8�.M2�7�.M2�6�.M2�5�.M2�4�.M2�3�.
M2�2�.M2�1�;

If� isStableMatrix�CM�2��,
Print�Style�"The first schedule is stable", Green��,
Print�Style�"The first schedule is not stable", Red���

If� isStableMatrix�CM�2��,
Print�Style�"The second schedule is stable", Green��,
Print�Style�"The second schedule is not stable", Red���

The first schedule is stable

The second schedule is stable

Verification of stability under arbitrary switching

prod�seq�� :� Dot �� Reverse�CM �� seq�
cond�sws�� :� Norm�prod�sws�� � 1

test�H�� :� If� And �� 	cond �� Sequences�2, H�
,
Print�Style�"All products of length " ��

ToString �H� �� " are contracting", Green��,
Print�Style�"Some product of length " ��

ToString �H� �� " is not contracting", Red���

test�6�
test�7�

Some product of length 6 is not contracting

All products of length 7 are contracting

Fig. 11. Applying a sufficient condition for stability of switched systems to
verify stability under non-deterministic network schedules.

Plant 1

Plant 2

1, y11

1, u11

2, y12

2, y21

3, y22

3, u21

4, y11

4, u11

5, y12

5, y21

6, y22

6, u21

C, y11

C, u11

C, y12

C, y21

C, y22

C, u21

Controller 1

Controller 2

Fig. 12. Memory slots graph of a multi-hop control network with two
symmetric double integrators.

The next step, in the code, is intersecting the constraints of

both control loops. Note that we need to lift the automata to

a common alphabet (pairs 〈σ1, σ2〉 where σ1 is a letter from

the alphabet of the first automaton and σ2 is a letter form the

alphabet of the second automaton). This lifting is obtained by

231

Compute automata of stable schedules for both subsystems

In[231]:= Needs�"Automata`automata`"�

	1 �

�� Idle
��1, y1,1� � �4, y1,1�� Idle
��2, y1,2� � �5, y1,2�� Idle
��4, y1,1� � �C, y1,1�� Idle
��5, y1,2� � �C, y1,2�� Idle

�� Active
��C, u1,1� � �4, u1,1�� Idle
��4, u1,1� � �1, u1,1�� Idle

;

	2 �

�� Idle
��3, y2,1� � �6, y2,1�� Idle
��2, y2,2� � �5, y2,2�� Idle
��6, y2,1� � �C, y2,1�� Idle
��5, y2,2� � �C, y2,2�� Idle

�� Active
��C, u2,1� � �6, u2,1�� Idle
��6, u2,1� � �3, u2,1�� Idle

;

baseSchedule � �2, 3, 4, 5, 6, 7, 8, 1�;

aut1 � StableSchedulesDFASW1,	1�
AddIdlesToWord�baseSchedule, 1��;

aut2 � StableSchedulesDFASW2,	1�
AddIdlesToWord�baseSchedule, 1��;

Lift the automata to a common alphabet and compute intersection

In[237]:= TR�v�� :� Transpose�v�;

compositionAlphabet �

ArrayFlatten�

TR�	 1 2 3 4 5 6 7 8
� 1
TR�	 1 2 3 4 5 6 7 8
� 6

1 TR�	 2 3 4 5 7 8
�
6 TR�	 2 3 4 5 7 8
�
3 3
5 5

�;

extAut1 � ExtendAlphabetDFA�aut1, compositionAlphabet,
1�;

extAut2 � ExtendAlphabetDFA�aut2, compositionAlphabet,
2�;

inter � MinimizeFA�IntersectionFA�extAut1, extAut2��;

Select a schedule in the intersection and print it

In[242]:= s � ToIndex�LanguageFA�inter, 13��1��;

explain��i�, j��� :�
�Union�	1�i��1�, 	2�j��1��, �	1�i��2�, 	2�j��2���
explain �� compositionAlphabet�s�

Out[244]=

��1, y1,1�� �4, y1,1�� �Idle, Idle�
��3, y2,1�� �6, y2,1�� �Idle, Idle�

��2, y1,2�� �5, y1,2�, �2, y2,2�� �5, y2,2�� �Idle, Idle�
��4, y1,1�� �C, y1,1�� �Idle, Idle�
��6, y2,1�� �C, y2,1�� �Idle, Idle�
��5, y1,2�� �C, y1,2�� �Idle, Idle�
��5, y2,2�� �C, y2,2�� �Active, Idle�

�� �Idle, Active�
��C, u1,1�� �4, u1,1�� �Idle, Idle�
��C, u2,1�� �6, u2,1�� �Idle, Idle�
��4, u1,1�� �1, u1,1�� �Idle, Idle�
��6, u2,1�� �3, u2,1�� �Idle, Idle�

�� �Idle, Idle�

Fig. 13. Applying compositional analysis to design a schedule for a system
with two control loops.

applying the function ExtendAlphabetDFA which implements

the lifting in the standard way. Once the lifting is done, we take

the intersection of the languages to obtain a joint schedule. The

first word of the automaton (in length-lex order) is extracted

and displayed.

We remark that compositional analysis allows synchronizing

node transmissions to send data of different plants simultane-

ously. In fact, the third element of the composition scheduling

illustrated in Figure 13 triggers a simultaneous transmission of

data y1,2 and y2,2. This is allowed, since they are transmitted

from the same physical node 2 to the physical node 5.

VII. CONCLUSIONS

We proposed a compositional mathematical framework for

modeling and analysing multi-hop communication networks.

We separated control, topology, routing, and scheduling and

proposed formal syntax and semantics for the dynamics of

the composed system. Our model allows separate analysis

of control loops towards a compositional design of sched-

ules that cope with competing needs of communication and

computation resources. We showed that the WirelessHART

specification fits our model, and we illustrated an experimental

tool that can be used both for verification and design. The

tool, along with the code for the examples, is available as a

Mathematica notebook at www.seas.upenn.edu/∼gera.

REFERENCES

[1] G. Weiss and R. Alur, “Automata based interfaces for control and
scheduling,” in Hybrid Systems: Computation and Control, HSCC, 2007,
pp. 601–613.

[2] R. Alur and G. Weiss, “Regular specifications of resource requirements
for embedded control software,” in Real-Time and Embedded Technology
and Applications Symposium, RTAS, 2008, pp. 159–168.

[3] G. Walsh, H. Ye, and L. Bushnell, “Stability analysis of networked
control systems,” Control Systems Technology, IEEE Transactions on,
vol. 10, no. 3, pp. 438–446, 2002.

[4] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked
control systems,” Control Systems Magazine, IEEE, vol. 21, no. 1, pp.
84–99, 2001.

[5] J. K. Yook, D. M. Tilbury, N. R. Soparkar, E. Syst, and E. S. Raytheon,
“Trading computation for bandwidth: Reducing communication indis-
tributed control systems using state estimators,” Control Systems Tech-
nology, IEEE Transactions on, vol. 10, no. 4, pp. 503–518, 2002.

[6] K. Aström and B. Wittenmark, Computer-controlled systems: Theory
and Design. Prentice Hall, 1997.

[7] M. Andersson, D. Henriksson, A. Cervin, and K. Arzen, “Simulation
of wireless networked control systems,” in Conference on Decision and
Control and European Control Conference. CDC-ECC, 2005, pp. 476–
481.

[8] A. J. van der Schaft and H. Schumacher, An Introduction to Hybrid
Dynamical Systems, 1st ed. Springer, Dec. 1999.

[9] D. Liberzon, Switching in Systems and Control. Boston, MA:
Birkhäuser, 2003.

[10] R. Alur and G. Weiss, “RTComposer: a framework for real-time
components with scheduling interfaces,” in International conference on
EMbedded SOFTtware, EMSOFT, 2008, pp. 159–168.

[11] “TDMA data-link layer specification,” HART communication founda-
tion, HCF SPEC 075 Revision 1.0, 2007.

[12] S. Wolfram, The Mathematica Book. Wolfram Media, August 2003.
[13] K. Sutner, “Automata, a hybrid system for computational automata

theory,” in International Conference on Implementation and Application
of Automata, CIAA, 2002, pp. 217–222.

232

