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Abstract— This paper explores the privacy of cloud out-
sourced Model Predictive Control (MPC) for a linear system
with input constraints. A client sends her private states to the
cloud who performs the MPC computation and returns the
control inputs. In order to guarantee that the cloud can perform
this computation without obtaining anything about the client’s
private data, we employ a partially homomorphic cryptosystem.
We propose protocols for two cloud-MPC architectures: a
client-server architecture and a two-server architecture. In
the first case, a control input for the system is privately
computed by the cloud server with the assistance of the client.
In the second case, the control input is privately computed
by two independent, non-colluding servers, with no additional
requirements from the client. We prove that the proposed
protocols preserve the privacy of the client’s data and of the
resulting control input. Furthermore, we compute bounds on
the errors introduced by encryption. We discuss the trade-off
between communication, MPC performance and privacy.

I. INTRODUCTION

The increase in the number of connected devices, as well
as their reduction in size and resources, determined a growing
demand for cloud-based services, in which a centralized
powerful server offers storage and processing capabilities to
users. However, issues regarding the privacy of the shared
data arise, as the users have no control over the actions of
the cloud, which can leak or abuse the data it receives.

Model Predictive Control (MPC) is a powerful scheme that
is successfully deployed in practice [1] for systems of vary-
ing dimension and architecture, including cloud platforms. In
competitive scenarios, such as energy generation in the power
grid, domestic scenarios, such as heating control in smart
houses, or time-sensitive scenarios, such as traffic control,
the control scheme should come with privacy guarantees to
protect the data of the users from eavesdroppers or from an
untrustworthy cloud.

Much effort has been dedicated to secure cloud computing
applications. For a single user, fully homomorphic encryption
(FHE) [2] guarantees privacy, but at high complexity require-
ments. For multiple users, functional privacy is required,
which can be attained by functional encryption [3], devel-
oped only for limited functionalities. More tractable solutions
that involve interactions between the participating parties
to ensure the confidentiality of the users’ data have been
proposed: in client-server computation, we mention partially
homomorphic encryption (PHE) [4] and differential privacy
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(DP) [5]; in two-server computation, solutions using garbled
circuits [6], secret sharing [7] and PHE [8] are available.

A. Contributions
In this paper, we discuss the implicit MPC computation

for a linear system with input constraints. We compute the
control input, while maintaining the privacy of the state,
using a cryptosystem that is partially homomorphic, i.e.,
supports additions of encrypted data. We first consider a
case where the control input is privately computed by a
server, with the help of the client. In the second case, the
computation is performed by two non-colluding servers, with
no requirements from the client. We use a privacy model
that stipulates that no computationally efficient algorithm run
by the cloud can infer anything about the private data, or,
in other words, an adversary doesn’t know more about the
private data than a random guess. Although this model is very
strict, it thoroughly characterizes the loss of information.

This work explores fundamental issues of privacy in con-
trol: the trade-off between efficiency, performance and pri-
vacy. We present two main contributions: proposing two
privacy-preserving protocols for MPC and evaluating the er-
rors induced by the encryption. A more detailed version of
this paper, that includes numerical results, is available at [9].

B. Related work
Differentially private distributed MPC was addressed

in [10]. Encrypted controllers were introduced in [11]
and [12] using PHE, and in [13] with FHE. Optimization
problems with DP were addressed in [14], [15] and PHE
in [16], [17].

Recent work in [18] has tackled the problem of privately
computing the input for a constrained linear system using
explicit MPC, in a client-server setup. There, the client
performs the computationally intensive trajectory localization
and sends the result to the server, which then evaluates the
corresponding affine control law on the encrypted state using
PHE. In our work, we focus on implicit MPC.

The performance degradation of a linear controller due to
encryption is analyzed in [19]. In our work, we investigate
performance degradation for the nonlinear control obtained
from MPC.

II. PROBLEM SETUP

We consider a discrete-time linear time-invariant system:

x(t+ 1) = Ax(t) +Bu(t), (1)

with the state x ∈ X ⊆ Rn and the control input u ∈
U ⊆ Rm. The optimal control receding horizon problem
with constraints on the states and inputs can be written as:
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J∗N (x(t)) = min
u0,...,N−1

1

2

(
xᵀNPxN +

N−1∑
k=0

xᵀkQxk + uᵀkRuk

)
s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1 (2)

xk ∈ X , uk ∈ U , k = 0, . . . , N − 1

xN ∈ Xf , x0 = x(t),

where N is the horizon length and P,Q,R � 0 are cost
matrices. For reasons related to error bounding, we consider
input constrained systems: 0 ∈ U = {−lu � u � hu},
X = Rn,Xf = Rn, and impose stability with appropriately
chosen costs and horizon such that the closed-loop system
has robust performance to bounded errors due to encryption,
described in Section VI. A survey on the conditions for
stability of MPC is given in [20].

Through straightforward manipulations, (2) can be written
as a quadratic program (see details in [21, Ch. 8,11]) in the
variable U := [u0 u1 . . . uN−1]

ᵀ.

U∗(x(t)) = argmin
U∈U

1/2 UᵀHU + UᵀF ᵀx(t) (3)

For the sake of simplicity, we keep the same notation for
the augmented constraint set U . After obtaining the optimal
solution, the first m components of U∗(x(t)) are applied as
input to the system (1): u∗(x(t)) = (U∗(x(t)))1:m.

A. Solution without privacy requirements
The constraint set U is a hyperbox, so the projection

step required for solving (3) has a simple closed form
solution and the optimization problem can be efficiently
solved with the projected Fast Gradient Method (FGM) [22],
given in Algorithm 1. The objective function is strongly
convex, since H � 0, therefore we can use the constant step
sizes L = λmax(H) and η = (

√
κ(H)− 1)/(

√
κ(H) + 1),

where κ(H) is the condition number of H . Warm starting
can be used at subsequent time steps of the receding horizon
problem by using part of the previous solution UK to
construct a new feasible initial iterate.

ALGORITHM 1: Projected Fast Gradient Descent
Input: H,F, x(t),U , L, κ(H), η, U0 ∈ U , z0 = U0,K
Output: UK(x(t))
1: for k=0. . . ,K-1 do
2: tk = (INm − 1

L
H)zk − 1

L
F ᵀx(t)

3: U i
k+1 =


−liu, if tik < −liu
tik, if tik ∈ [−liu, hi

u]

hi
u, if tik > hi

u

, i = 1, . . . , Nm

4: zk+1 = (1 + η)Uk+1 − ηUk

5: end for

B. Privacy objectives
The unsecure cloud-MPC problem is depicted in Figure 1.

The system’s constant parameters A,B, P,Q,R,N are pub-
lic, motivated by the fact the parameters are intrinsic to the
system and hardware, and could be guessed or identified;
however, the measurements, control inputs and constraints
are not known and should remain private. We want to
devise private cloud-outsourced versions of Algorithm 1 such
that the client obtains the control input u∗(t) with only a
minimum amount of work. The cloud (consisting of either
one or two servers) should not infer anything else than what

was known prior to the computation about the measurements
x(t), the control inputs u∗(t) and the constraints U . We
tolerate semi-honest servers, meaning that they correctly
follow the steps of the protocol but may store the transcript
of the messages exchanged and process the data received to
try to learn more information than allowed.

Fig. 1. Unsecure MPC: the system model, horizon and costs are public.
The states, control inputs and input constraints are privacy-sensitive.

To formalize the privacy objectives, we introduce the
privacy definitions that we want our protocols to satisfy,
described in [23, Ch. 7]. In what follows, {0, 1}∗ defines
a sequence of bits of unspecified length. Given a countable
index set I , an ensemble X = {Xi}i∈I , indexed by I , is a
sequence of random variables Xi, for all i ∈ I .

Two ensembles are called computationally indistinguish-
able if no efficient algorithm can distinguish between them.

Definition 1: The ensembles X = {Xn}n∈N and Y =
{Yn}n∈N are computationally indistinguishable, denoted
c≡, if for every polynomial-time algorithm D, every positive
polynomial p and all sufficiently large n, the following holds:

|Pr[D(Xn) = 1]− Pr[D(Yn) = 1]| < 1/p(n).

The definition of two-party privacy says that a protocol
privately computes the functionality it runs if all information
obtained by a party after the execution of the protocol, while
also keeping a record of the intermediate computations, can
be obtained only from the inputs and outputs of that party.

Definition 2: Let f : ({0, 1}∗)2 → ({0, 1}∗)2 be a func-
tionality, and fi(x1, x2) be the ith component of f(x1, x2),
i = 1, 2. Let Π be a two-party protocol for computing f . The
view of the ith party during an execution of Π on the inputs
(x1, x2), denoted by V Π

i (x1, x2), is (xi, coins,m1, . . . ,mt),
where coins represents the outcome of the ith party’s internal
coin tosses, and mj represents the jth message it has
received. For a deterministic functionality f , we say that Π
privately computes f if there exist probabilistic polynomial-
time algorithms, called simulators, denoted by Si, such that:

{Si(xi, fi(x1, x2))}x1,2∈{0,1}∗
c≡ {V Π

i (x1, x2)}x1,2∈{0,1}∗ .

The purpose of the paper is to design protocols with the
functionality of Algorithm 1 that satisfy Definition 2. To this
end, we use the encryption scheme defined in Section III.
In Sections IV and V, we address two private cloud-MPC
solutions that present a trade-off between the computational
effort at the client and the total time required to compute the
solution u∗(t). We discuss in Section VI how to connect the
domain of the inputs in Definiton 2 with the domain of real
numbers needed for the MPC problem.
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III. PARTIALLY HOMOMORPHIC CRYPTOSYSTEM

In this paper, we use the Paillier cryptosystem [4], which is
an asymmetric additively homomorphic encryption scheme.
The message space for the Paillier scheme is ZNσ , where Nσ
is a large integer that is the product of two prime numbers
p, q. The pair of keys is (pk, sk), where the public key is
pk = (Nσ, g), with g ∈ ZN2

σ
having order Nσ and the secret

key is sk = (γ, δ): γ = lcm(p−1, q−1), δ = ((gγ mod N2
σ−

1)/Nσ)−1 mod Nσ.
For a message a ∈ ZNσ , called plaintext, the Pailler

encryption primitive is defined as: [[a]] := garNσ mod N2
σ ,

with r random value in ZNσ . Intuitively, the additively homo-
morphic property means that there exists an operator ⊕ de-
fined on the space of encrypted messages, called ciphertexts,
such that: [[a]]⊕ [[b]] = [[a+b]], ∀a, b ∈ ZNσ . Formally, the
decryption primitive is a homomorphism between the group
of ciphertexts with the operator ⊕ and the group of plaintexts
with addition +. The scheme also supports multiplication
between a plaintext and an encrypted message, obtained by
adding the encrypted message for the corresponding integer
number of times: b⊗ [[a]] = [[ba]]. We will use the same
notation for operations on vectors and matrices.

Proving the privacy of a protocol that makes use of
cryptosystems involves the concept of semantic security [23,
Ch. 5]. Under the assumption of decisional composite residu-
osity [4], the Paillier cryptosystem is semantically secure and
has indistinguishable encryptions, which, in essence, means
that an adversary cannot distinguish between the ciphertext
[[a]] and a ciphertext [[b]] based on the messages a and b.

To summarize, PHE allows a party that does not have the
private key to perform linear operations on encrypted integer
data. For instance, a cloud-based Linear Quadratic Controller
can be computed entirely by one server, because the control
action is linear in the state. Nonlinear operations are not
supported within this cryptosystem, but can be achieved with
communication between the party that has the encrypted data
and the party that has the private key.

IV. CLIENT-SERVER ARCHITECTURE

To be able to use the Paillier encryption, we need to rep-
resent the messages on a finite set of integers, parametrized
by Nσ , i.e., each message is an element in ZNσ .

Notation: Given a real quantity x ∈ R, we use the notation
x̄ for the corresponding quantity in fixed-point representation
on one sign bit, li integer and lf fractional bits.

In this section and Section V, we consider a fixed-point
representation of the values and perform implicit multiplica-
tion steps to obtain integers and division steps to retrieve the
true values. We analyze the implications of the fixed-point
representation over the MPC solution in Section VI. We drop
the (̄·) from the variables in order to not burden the notation.

We introduce a client-server (CS) model in Figure 2 and
present an interactive protocol that privately computes the
control input, while maintaining the privacy of the state of the
client, in Protocol 2. The Paillier encryption is not order pre-
serving, due to the random value required in the encryption
primitive, so the projection operation cannot be performed

locally by the server. Hence, the server sends the encrypted
iterate [[tk]] to the client to project it. Then, the latter encrypts
the feasible iterate and sends it back to the server.

Fig. 2. Private client-server (CS) setup for MPC.

PROTOCOL 2: Encrypted MPC in a CS architecture
Input: C: x(t),K, li, lf , Ū , pk, sk; S: H̄f , F̄ , η̄,K, li, lf , pk, [[U0]]
Output: C: u = (UK(x(t)))1:m

1: C: Encrypt and send [[x(t)]] to S
2: S: [[z0]] = [[U0]]
3: for k=0. . . ,K-1 do
4: S: [[tk]] = (INm− H̄f )⊗ [[zk]]⊕ (−F̄ ᵀ

f )⊗ [[x(t)]], send it to C
5: C: Decrypt tk and truncate to lf fractional bits
6: C: Uk+1 = ΠŪ (tk) . Projection on Ū
7: C: Encrypt and send [[Uk+1]] to S
8: S: [[zk+1]] = (1 + η̄)⊗ [[Uk+1]]⊕ (−η̄)⊗ [[Uk]]
9: end for

10: C: Decrypt and output u = (UK)1:m

We assume that [[U0]] already captures the information of
whether the iteration is cold or warm start.

Theorem 1: Protocol 2 achieves privacy as in Definition 2
with respect to a semi-honest server.

Proof: The initial value of the iterate gives no infor-
mation to the server about the result, as the final result is
encrypted and the number of iterations is a priori fixed. The
view of the server, as in Definition 2, is composed of its
inputs, the messages received {[[Uk]]}k=0,...,K , which are
all encrypted, and no output. We construct a simulator that
replaces the messages with random encryptions of corre-
sponding length. Due to the semantic security of the Paillier
cryptosystem, proved in [4], the view of the simulator is com-
putationally indistinguishable from the view of the server.

V. TWO-SERVER ARCHITECTURE

Although in Protocol 2, the client needs to store and pro-
cess substantially less data than the server, the computational
requirements might be too stringent for large values of K
and Nσ . In such a case, we outsource the problem to two
servers (SS), and only require the client to encrypt x(t), send
it to one server and decrypt the received the result [[u∗]].
In this setup, depicted in Figure 3, the existence of two
non-colluding servers is assumed.

In Figure 3 and Protocol 3, we denote by [[·]] a message
encrypted by pk1 and by [{·}] a message encrypted by pk2.
We use two pairs of keys so that the client and second server
do not have the same private key and do not need to interact.

As before, we need an interactive protocol to achieve the
projection. We use the DGK comparison protocol, proposed
in [24], such that, given two encrypted values of l bits
[[a]], [[b]] to S1, after the protocol, S2 obtains a bit (β =
1) ≡ (a ≤ b), without finding anything about the inputs.
Moreover, S1 finds nothing about β. We augment this proto-
col by introducing a step before the comparison in which S1
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randomizes the order of the two values to be compared, such
that S2 does not know the significance of β with respect to
the inputs. Furthermore, by performing a blinded exchange,
S1 obtains the minimum (respectively, maximum) value of
the two inputs, without any of the two servers knowing what
the result is. The above procedure is performed in lines 6–11
in Protocol 3. More details can be found in [17].

In order to guarantee that S2 does not find out the private
values after decryption, S1 adds sufficiently large random
noises to the messages. The random numbers in lines 8 and
14 are chosen from (0, 2l+λσ ) ∩ ZNσ , which ensures the
indistinguishability between the sum of the random number
and the private value and a random number of equivalent
length [25], where λσ is the statistical security parameter.

Since the variables we compare are results of additions and
multiplications, we need to ensure that they are represented
on l bits before performing the comparison protocol. This
introduces a truncation step in line 5: S1 adds noise to tk
and sends it to S2 which decrypts it, truncates the result to l
bits and sends it back. S1 then subtracts the truncated noise.

Fig. 3. Private two-server (SS) setup for MPC.

PROTOCOL 3: Encrypted MPC in a SS architecture
Input: C: x(t), pk1, pk2, sk2; S1: H̄f , F̄ , η̄,K, li, lf , pk1, pk2, [[U0]];

S2: K, li, lf , pk1, pk2, sk1

Output: C: u = (UK(x(t)))1:m

1: C: Encrypt and send [[x(t)]], [[hu]], [[−lu]] to S1

2: S1: [[z0]]← [[U0]]
3: for k=0. . . ,K-1 do
4: S1: [[tk]]← (INm − H̄f )⊗ [[zk]]⊕ (−F̄ ᵀ

f )⊗ [[x(t)]]

5: S1, S2: [[tk]]← truncate [[tk]]
6: S1: ak, bk ← randomize [[tk]], [[hu]]
7: S1, S2: DGK s.t. S2 obtains (βk = 1) ≡ (ak ≤ bk)
8: S1: Pick rk, sk and send [[ak]]⊕ [[rk]], [[bk]]⊕ [[sk]] to S2

9: S2: Send back [[βk]] and [[vk]] ← [[ak + rk]] ⊕ [[0]] if βk = 1
or [[vk]]← [[bk + sk]]⊕ [[0]] if βk = 0

10: S1: [[Uk+1]]← [[vk]]⊕ sk ⊗ ([[βk]]⊕ [[−1]])⊕ rk ⊗ [[βk]] .
Uk+1 ← min(tk, hu)

11: S1, S2: Redo 6–10 to get [[Uk+1]]← max(Uk+1,−lu)
12: S1: [[zk+1]]← (1 + η̄)⊗ [[Uk+1]]⊕ (−η̄)⊗ [[Uk]]
13: end for
14: S1: Pick ρ and send [[(UK)1:m]]⊕ [[ρ]] to S2

15: S2: Decrypt and re-encrypt with pk2 and send to S1: [{u+ ρ}]
16: S1: [{u}]← [{u+ ρ}]⊕ [{−ρ}] and send it to C
17: C: Decrypt and output u

Theorem 2: Protocol 3 achieves privacy as in Definition 2,
as long as the two semi-honest servers do not collude.

Proof: The view of S1 is composed by its inputs
and received messages, and no output. All the messages are
encrypted (the same holds for the comparison subprotocol).
Furthermore, in line 9, an encryption of zero is added to
the quantity S1 receives such that the encryption is re-
randomized and S1 cannot recognize it. Due to the semantic
security of the cryptosystems, the view of S1 is computation-
ally indistinguishable from the view of a simulator which

follows the same steps as S1, but replaces the incoming
messages by random encryptions of corresponding length.

The view of S2 is composed by its inputs and received
messages, and no output. Apart from the comparison bits,
the messages are always blinded by noise that has at least
λσ bits more than the private data being sent, with λσ chosen
appropriately large (e.g. 100 bits [25]).

Crucially, the noise selected by S1 is different at each
iteration. Hence, S2 cannot extract any information by com-
bining messages from multiple iterations, as they are always
blinded by a different large enough noise. Moreover, the
randomization step in line 6 ensures that S2 cannot infer
anything from the values of βk, as the order of the inputs
is unknown. Thus, we construct a simulator that follows the
same steps as S2, but instead of the received messages, it ran-
domly generates values of appropriate length, corresponding
to the blinded private values, and random bits corresponding
to the comparison bits. The view of such a simulator will be
computationally indistinguishable from the view of S2.

Remark 1: One can expand Protocols 2 and 3 over mul-
tiple time steps, such that U0 is obtained from the previous
iteration and not given as input, and formally prove their
privacy. A more detailed proof that explicitly constructs the
simulators can be found in [17].

VI. FIXED-POINT PRECISION MPC
We consider fixed-point representations with one bit sign,

li integer bits and lf fractional bits and multiply them by 2lf

to obtain integers. Working with fixed-point representations
can lead to overflow, quantization and arithmetic round-off
errors. Thus, we want to compute the deviation between the
fixed-point solution and optimal solution of Algorithm 1.

In order to preserve the feasibility of the fixed-point pre-
cision solution, ensure that the strong convexity of the fixed-
point objective function still holds and the fixed-point step
size is such that FGM converges, we consider the following:

Assumption 1: The number of fractional bits lf and con-
stant c ≥ 1 are chosen large enough such that:
(i) Ū ⊆ U : the fixed-point precision solution is still feasible.

(ii) The eigenvalues of the fixed-point representation H̄f are
contained in the set (0, 1], where Hf := H̄/(cL̄) and
L̄ := λmax(H̄). The constant c is required in order to
overcome the possibility that (1/L̄)H̄ has the maximum
eigenvalue larger than 1 due to fixed-point errors.

(iii) The fixed-point representation of the step size satisfies:

0 ≤
(√

κ(H̄)− 1

)/(√
κ(H̄) + 1

)
≤ η̄ < 1.

Overflow errors: Bounds on the infinity-norm on the
fixed-point dynamic quantities of interest in Algorithm 1
were derived in [26] for each iteration k, and depend on
a bounded set X0 such that x(t) ∈ X0 and x̄(t) ∈ X̄0:

||Ūk+1||∞ ≤ max{||l̄u||∞, ||h̄u||∞} = RŪ
||z̄k+1||∞ ≤ (1 + 2η̄)RŪ := ζ,

||t̄k||∞ ≤ ||INm − H̄f ||∞ζ + ||F̄f ||∞RX̄0
,

where Ff = F̄ /(cL̄) and RS represents the radius of a set
S w.r.t. the infinity norm. We select from these bounds the
number of integer bits li such that there is no overflow.
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A. Difference between real and fixed-point solution

Denote by UK the solution in exact arithmetic of the
MPC problem (3) obtained after K iterations of Algo-
rithm 1. Furthermore, denote by ŨK the solution obtained
after K iterations but with H,F, x(t),U , L, η replaced by
their fixed-point representations. Finally, denote by ŪK the
solution of Protocols 2 and 3 after K iterations, where
the iterates [[tk]], [[Uk]] have fixed-point representation. We
obtain the following upper bound on the difference between
the solution obtained on the encrypted data and the nominal
solution of the MPC problem (3) after K iterations:

||ŪK − UK ||2 ≤ ||ŨK − UK ||2 + ||ŪK − ŨK ||2.
1) Quantization errors: We use the following remark to

investigate the quantization error bounds. Define εa = ā− a
and εb = b̄−b. Then, āb̄−ab = āb̄−āb+āb−ab = εab+āεb.

Consider iteration k of the projected FGM where the
coefficients are replaced by the fixed-point representations of
the matrices H/L,F/L, the vector x(t) and the set U . The
errors induced by quantization of the coefficients between
the original iterates and the approximation iterates are:

t̃k − tk =− εHf zk + (INm − H̄f )εz,k − εFx
ξqk+1 :=Ũk+1 − Uk+1 = Dq

k(t̃k − tk)

z̃k+1 − zk+1 =εη∆Uk + (1 + η̄)ξqk+1 − η̄ξ
q
k,

(4)

where we used the notation: ∆Uk = Uk+1−Uk; εη = η̄−η;
εHf = H̄f − H/(cL); εFx = F̄ ᵀ

f x̄(t) − F ᵀx(t)/(cL) =

εᵀFfx(t) + F̄f εx; εx = x̄(t)− x(t); εFf = F̄f − F/(cL).
The error ξqk+1 is reduced from t̃k−tk due to the projection

on the hyperbox. We represent this in (4) via a diagonal
matrix Dq

k with positive elements at most one.
We set ξq−1 = ξq0 . From (4), we derive a recursive iteration

that characterizes the error of the primal iterate, for k =
0, . . . ,K, which we can write as a linear system:

Ã(Dq
k) :=

[
(1 + η̄)Dq

k(INm − H̄f ) −η̄Dq
k(INm − H̄f )

INm 0Nm

]
B̃(Dq

k) :=

[
−εHfD

q
k εηD

q
k(INm − H̄f )

0Nm 0Nm

]
(5)[

ξqk+1

ξqk

]
=Ã(Dq

k)

[
ξqk
ξqk−1

]
+ B̃(Dq

k)

[
zk

∆Uk−1

]
− εFx.

We choose this representation in order to have a relevant
error bound in Theorem 3, that shrinks to zero as the number
of fractional bits grows. In the following, we find an upper
bound of the error using Ã := Ã(INm) and B̃ := B̃(INm).

Theorem 3: Under Assumption 1, the system defined
by (5) is bounded. Furthermore, the norm of the error
between the primal iterates of the original problem and of
the problem with quantized coefficients is bounded by:

||ξqk+1||2 ≤
∣∣∣∣∣∣EÃk∣∣∣∣∣∣

2

∣∣∣∣∣∣∣∣[ ξq0ξq−1

]∣∣∣∣∣∣∣∣
2

+ γ

k−1∑
l=0

∣∣∣∣∣∣EÃk−1−lB̃
∣∣∣∣∣∣

2
+

+ ζ

k−1∑
l=0

∣∣∣∣∣∣EÃk−1−l
∣∣∣∣∣∣

2
=: ε1; γ = (3 + 2η̄)

√
NmRŪ ;

ζ = ||εFf ||2R2
X0

+ 2−lf
√
n||F̄f ||2,

where E = [INm 0Nm], R2
X0

is the radius of the compact

set X0 w.r.t. the 2-norm and RŪ = max{||lu||∞, ||hu||∞}.
Proof: The inner stability of the system is given by the

fact that Ã has spectral radius ρ(Ã) < 1, proven in Lemma 1
in [26]. We use that ||Ã(Dq

k)||2 ≤ ||Ã||2 (resp., ||B̃(Dq
k)||2 ≤

||B̃||2) and express the bounds in terms of the latter.
From (5), one can obtain the following expression for the

errors at time k + 1 and k, for k = 0, . . . ,K − 1:[
ξqk+1

ξqk

]
≤ Ãk

[
ξq0
ξr−1

]
+

k−1∑
l=0

Ãk−1−l
(
B̃

[
zl

∆Ul−1

]
− εFx

)
,

and the first term goes to zero as k →∞. We multiply this
by E = [INm 0Nm] to obtain the expression of ||ξqk+1||2.

Subsequently, for any 0 ≤ k ≤ K − 1:∣∣∣∣[zᵀk ∆Uᵀ
k−1

]ᵀ∣∣∣∣
2
≤ ||Uk + η̄∆Uk−1||2 + ||∆Uk−1||2

≤ (3 + 2η̄)
√
Nm(max

i
{liu, hiu})2 := γ;

||εFx||2 ≤ ||εFf ||2||x(t)||2 + ||F̄f ||2||εx||2
≤ ||εFf ||2R2

X0
+ 2−lf

√
n||F̄f ||2 := ζ.

Remark 2: In primal-dual algorithms, the maximum val-
ues of the dual variables corresponding to the complicating
constraints cannot be bounded a priori, i.e., we cannot give
overflow or quantization error bounds. This justifies our
focus on a problem with only simple input constraints.

2) Arithmetic round-off errors: The encrypted values do
not necessarily maintain the same number of bits after oper-
ations, so we might have round-off errors where we perform
truncations (line 5 in Protocols 2 and 3). In this case, we
obtain similar results to [26], where the quantization errors
were not analyzed. Consider iteration k of the projected
FGM. The errors due to round-off between the primal iterates
of the two solutions are:

t̄k − t̃k =(INm − H̄f )(z̄k − z̃k) + ε′t,k

ξrk+1 :=Ūk+1 − Ũk+1 = Dr
k(t̄k − tk) (6)

z̄k+1 − z̃k+1 =(1 + η̄)ξrk+1 − η̄ξrk.
Again, the projection on the hyperbox reduces the er-

ror, so Dr
k has positive diagonal elements less than one.

For Protocol 2, the round-off error due to truncation is
(ε′t,k)i ∈ [−Nm2−lf , 0], i = 1, . . . , Nm. The encrypted
truncation step in Protocol 3 introduces an extra term,
making (ε′t,k)i ∈ [−(1 +Nm)2−lf , 2−lf ].

We set ξr−1 = ξr0 . From (6), we derive a recursive iteration
that characterizes the error of the primal iterate, which we
can write as a linear system, with Ã(·) as before:[

ξrk+1

ξrk

]
=Ã(Dr

k)

[
ξrk
ξrk−1

]
+Dr

kε
′
t,k. (7)

Theorem 4: Under Assumption 1, the system defined
by (7) is bounded. Furthermore, the norm of the error of
the primal iterate is bounded by:

||ξrk||2 ≤
∣∣∣∣∣∣EÃk∣∣∣∣∣∣

2

∣∣∣∣∣∣∣∣[ ξr0ξr−1

]∣∣∣∣∣∣∣∣
2

+ γ′
k−1∑
l=0

∣∣∣∣∣∣EÃk−1−l
∣∣∣∣∣∣

2
=: ε2,

γ′CS =2−lf (Nm)
3
2 ; γ′SS = 2−lf

√
Nm(1 +Nm).

The proof is straightforward.
One can eliminate the initial errors ξq0 and ξr0 and their
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effects by choosing the same initial iterates represented on
lf fractional bits for both problems.

Remark 3: As lf → ∞, ε1 → 0 and ε2 → 0. The
persistent noise in (5) and (7), which is composed by
quantization errors and round-off errors, becomes zero when
the number of fractional bits mimics a real value.

B. Trade-off between performance and privacy

We can incorporate the error ε := ε1 + ε2 either as a
bounded disturbance in system (1) and design the terminal
cost as described in [27], so that the controller achieves inher-
ent robust stability, or, alternatively, as a suboptimality in the
cost J̄N (x(t), ŪK), and seek asymptotic stability as in [28].

For every instance of problem (2), the error bounds can
be computed as a function of the number of integer and
fractional bits. Therefore, in the offline phase, the fixed-point
precision of the variables is chosen such that there is no
overflow and one of the conditions on ε is satisfied. Note
that these conditions can be overly-conservative.

The protocol for the two-server architecture is slower than
the protocol for client-server architecture and the reason for
that is communication. Performing the projection with PHE
requires l communication rounds, where l is the size of the
messages compared. Privately updating the iterates requires
another communication round. Hence, privacy comes at the
price of complexity: hiding the private data requires working
with large encrypted numbers, and the nonlinear computa-
tions on private data require communication. Furthermore,
the more parties that need to be oblivious to the private data
(two servers in the second setup compared to one server in
the first), the more complex the private protocols become.

VII. CONCLUSION

We presented two methods to achieve the private compu-
tation of the solution to cloud-outsourced MPC via the fast
gradient method, using additively homomorphic encryption.
The client desires to keep the state, the control inputs and the
constraints private. To this end, it encrypts the current state.
The cloud can be composed by one or two servers and has to
relieve the computation from the client in a private manner.
First, we proposed an architecture where the computation is
split between the client and one server: the client performs
the projection on the constraints, while the server performs
the rest of the computations needed to solve the optimization
problem. Second, we proposed a two-server architecture,
in which the client is exempt from any computations and
the two servers use blinded communication to perform the
nonlinear operations on encrypted data. We proved that both
protocols achieve privacy for semi-honest servers. Further-
more, we analyzed the quantization and round-off errors
introduced by encryptions and gave upper bounds which can
be used to choose an appropriate precision that corresponds
to performance requirements on the MPC.
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