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Abstract— In this paper, we develop a method of control
for energy harvesting devices - i.e. systems which can restore
their energy reserves online - fit for the purpose of using
actuators for tracking a stochastic trajectory. This is a problem
of significant novelty, insofar that most prior work concerning
energy harvesting devices focuses on energy harvesting com-
munication nodes, and not on devices capable of actuation.
Moreover, it is a problem with significant potential applications,
as endowing devices with a means for determining how and
when energy should be used to best accomplish an assigned task
is a central engineering problem faced in developing automation
on a large scale. We take a scenario-based model predictive
control approach to solving this problem, in which stochastic
models of the energy arrival and target evolution processes
are used in order to generate a random optimization problem,
the solution of which generates a sequence of controls to be
applied by the device’s actuators. We show that the optimization
required by this approach admits a small convex formulation,
which may be solved efficiently. We examine the efficacy of the
designed controller through numerical simulations.

I. INTRODUCTION

Energy harvesting devices - those systems which are capa-
ble of restoring their energy reserves through interacting with
their environment - represent an area of significant promise
for the development of future technologies. Any applications
which involve sensors and robots operating independent of
human intervention for long periods of time require that
they be able to adequately reason about the availability of
energy, both current and future, when planning their actions.
Such applications include those as adventurous as space
exploration [1], as vital as environmental monitoring [2], and
as pragmatic as security surveillance [3]. Despite applications
which demand a full understanding of the subject, there are
many open questions left to be resolved.

Most work to date concerning the development of mathe-
matics for the optimal use of energy harvesting devices has
concerned communication nodes, for which the harvested en-
ergy is used to supply power for the transmission of wireless
signals. Principally, authors in this area are concerned with
maximizing performance of communication networks with
respect to communication-specific criteria. A recent review
of this area can be found in [4]. Only a few recent works
[5]–[7], have studied problems concerning the control perfor-
mance of a plant coupled to an energy harvesting device, with
[5] studying an optimal Linear-Quadratic-Gaussian control
problem with feedback coming from an energy-harvesting
sensor, [6] demonstrating when estimation error will remain
bounded under certain types of sensing policies with simple
energy harvesting sources, and [7], [8] analyzing the stability
of systems using feedback from energy harvesting sensors.

This work concerns a significantly different problem, that
of designing a control method for an energy harvesting

The authors are with the Department of Electrical and Systems En-
gineering, University of Pennsylvania, Pennsylvania, PA 19104, USA,
{nwatk,kgatsis,morari,pappasg}@upenn.edu

device which uses the energy collected from harvesting to
supply power to actuators as a means of affecting the plant’s
state. In this context, we face several difficulties not present
in the consideration of energy harvesting communication
nodes. Principally, prior works consider cases in which
energy is consumed by a sensor node, for the purpose of
providing feedback to the plant. In such a framework, the
energy consumption of the plant is left unconsidered, which
prevents the consideration of many devices, e.g. robots. Our
work is the first to address such a problem.

In so doing, we demonstrate that scenario-based random
convex programming techniques can be used to define a
model predictive control procedure which approximately
solves a chance-constrained optimization problem minimiz-
ing the extent to which the evolution of the plant deviates
from a randomly moving target. While scenario-based meth-
ods have been in use in the model predictive control literature
for some time (see, e.g., [9]–[11] and the references therein),
the problem we address here is itself novel, and is notable
insofar that it addresses a system with partially nonlinear
dynamics. Moreover, we do so by developing a convex
representation that is small, and whose size is invariant to
the number of scenarios used to approximate the chance
constraints. That is to say, a key technical contribution of
this work is a novel convex programming representation of
the nonconvex programming problem which arises from the
finite horizon optimal control of energy harvesting actuators,
which does not generate a large-scale optimization problem
when many scenarios are considered. This is critical, as a
finite horizon optimal control problem must be solved at
each stage during control of a process when applying model
predictive control techniques, and its size is a limiting feature
present in many applications of scenario-based approxima-
tion (see, e.g. [10], [12], [13], wherein the constraint set
grows linearly with the number of scenarios).

The paper is organized as follows. In Section II, we define
an abstract model of a dynamical energy harvesting device,
and state the problem studied in the remainder. In Section III,
we formally construct the model predictive control method
proposed as a means of controlling a dynamical energy
harvesting device. In Section IV, we study an application
of this framework, that of controlling the position of a mass
actuated by an electric motor so as to follow a stochastic
target. We also provide a detailed physical model which
confirms that a realistic plant can satisfy the assumptions
of our abstract model. Note that where necessary, detailed
proofs have been removed from the text to conserve length,
but will appear in a later paper.

Notation: We denote by [k] the first k natural numbers,
i.e. [k] = {1, 2, . . . , k}. We denote by [k]0, the union of the
first k natural numbers with {0}, i.e. [k]0 = {0} ∪ [k]. We
denote by JzKba the projection of z into the interval [a, b], i.e.
JzKba = min{max{z, a}, b}. We denote by x(j|t), the value
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of the state variable x(j + t), and use similar notation for
other quantities which change with respect to time. •

II. MODEL AND PROBLEM STATEMENT

In this section, we formally define the components of
the system studied in this paper, as well as our problem
statement. Broadly speaking, our system is a standard linear
plant augmented with capabilities for explicitly modeling the
energy consumed by the system’s actuators, and the process
by which energy is restored to the system.

A. Plant Model
We consider a linear plant, with discrete-time dynamics

xt+1 = Axt +But, (1)

in which A ∈ Rn×n and B ∈ Rn×p are real matrices of
appropriate dimension, xt denotes the state of the system at
time t, and ut denotes the control input at time t. At every
time t, the plant is supplied with some choice of control
ut, which is an element of some convex set of possible
control signals U, which we assume to contain the origin,
i.e. we assume that at any time it is permissible to take no
action. Here, we assume the set U is a given as part of our
problem’s abstraction. In practice, it should be chosen so as
to adequately model the limitations of the plant’s actuators.

B. Energy Model
We adopt the standard model of energy harvesting devices

used in the communications community to our setting, mak-
ing as few of changes as possible. Letting Rt denote the
amount of energy reserved in the device’s battery for use by
the actuator, and Ht denote a random variable enumerating
the amount of available energy to be harvested by the system
at time t, the process {Rt} evolves according to

Rt+1 = JRt +Ht − C(ut)K
Rcap
0 , (2)

in which Rcap is some finite upper-capacity which limits the
battery’s storage capabilities, and C is a function which maps
the control input at time t to its energy consumption. We
assume C to be convex and definite with respect to the origin,
which we expect to not be a substantial limitation. Indeed,
whenever we can verify that the average power consumed by
the plant under a particular fixed control input u is convex
and definite, e.g. proportional to a norm of the signal, a
simple integration argument shows that C is convex and
definite as well. This is precisely the case encountered for
a robot which uses DC motors for actuation and uses motor
current as a means of control, as we show with respect to
the application considered in Section IV.

Because performing actuation requires the consumption
of energy, we enforce that at all times, the energy signal is
chosen so as to respect the energy causality constraint

C(ut) ≤ Rt (3)

at all times. Intuitively speaking, (3) enforces that the plant
consumes only the energy made available to it from the
system’s energy reserve. A key component of our problem is
designing a control law for the plant such that it adequately
accounts for the future availability of energy, and balances it
against the demands placed on it by the controller’s objective.

C. Objective Model

We wish for our controller to track a stochastically evolv-
ing target. This captures as a special case the problem of
regulating a plant so as to maintain a fixed point, while also
allowing us to model more complicated situations, such as
tasking a robot to follow a randomly moving target.

In order to adequately model this problem, we assume
there is some stochastic process {qt} which determines the
evolution of the target trajectory, and some other stochastic
process {Qt} which determines the evolution of the norm
used to penalize deviating from the target trajectory. More
concretely, we assume the controller takes as its task the
objective of minimizing the cumulative deviation from the
target path, starting from the current time, through some fixed
lookahead horizon τ. We denote the cumulative deviation
from the desired target path over the interval [t, t+τ ], under
a fixed control signal as measured by the quadratic norm
defined by {Qt} as Dt(u) ,

∑τ
j=0 d(j|t)(u), where we

define d(j|t)(u) as

d(j|t)(u) , (x(j|t)(u)− q(j|t))
TQ(j|t)(x(j|t)(u)− q(j|t)),

where x(j|t) is defined as the value of the state vector process
evaluated at time t+ j, evolving under control signal u, i.e.

x(j|t)(u) , Ajx(0|t) +

j−1∑
k=0

A(j−k)−1Bu(k|t). (4)

Note that in principle, the developments which take place in
this paper depend in no way on the particular form of the
objective function, other than its convexity. We focus on a
stochastically evolving quadratic form here for purposes of
simplicity and concreteness, but the results themselves are
not limited to this consideration.

D. Problem Statement

In this paper, our core problem is that of considering
how to minimize the expected deviation from the target
process E[Dt(u)] over the chosen lookahead horizon τ as
a means of recursively generating an input signal for an
energy harvesting device’s actuators. The principal difficulty
we encounter in addressing this problem is due to ensuring
that the energy causality constraint (3) is considered in an
appropriate manner by the controller. As (3) is defined by
an inequality between a function of the control signal and
a random variable, this necessarily means that finding an
optimal control law would involve solving a constrained
stochastic control problem, which is intractable in all but
the simplest circumstances (see, e.g., [14] or [15]).

For this reason, we address this task by way of designing a
stochastic model predictive controller (SMPC), which guar-
antees that at each time the designed control signal is energy
feasible for all future times over the control horizon with
sufficiently large probability. While the design of effective
SMPC schemes is itself often a difficult problem (see, e.g.
[16] for a recent review), we show in the remainder that
the problem specified in this section has enough structure
so as to admit a controller which performs well, despite the
nonlinearities inherent to the energy reserve dynamics.
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III. CONTROLLER DESIGN

In this section, we design a stochastic model predictive
controller for the problem defined in Section II. Principally,
our design technique relies on the use of scenario-based ran-
dom convex programming as an approximation for a chance-
constrained optimization problem. While in general, such
techniques result in the generation of large-scale optimization
problems [10], [12], [13], and are beholden to the linearity of
the system’s dynamics in order to generate convex optimiza-
tion problems, we show that in spite of the nonlinearity of
the energy reserve process dynamics (2), the structure of the
present problem allows a convex formulation which is size
invariant with respect to the number of scenarios considered.

Recalling the notation defined in Section II, we may define
a finite-time, chance-constrained optimal control problem
(CCOCP) which formalizes the goal of minimizing the
expected deviation of the plant from the target as follows

minimize
u∈Uτ−1

E[Dt(u)] (5a)

subject to x(j+|t) = Ax(j|t) +Bu(j|t), (5b)

R(j+|t) = JR(j|t) +H(j|t) − C(u(j|t))K
Rcap
0 , (5c)

P{∩τ−1
j=0{C(u(j|t)) ≤ R(j|t)}} ≥ 1− ε, (5d)

where we note that we need not consider {x(j|t)}τj=0 explic-
itly as optimization variables, by eliminating them through
the relation (4). Note that we force the controller to account
for the availability of energy in its decision-making by intro-
ducing the chance constraint (5d). Explicitly, (5d) enforces
that the designed control signal u ∈ Uτ−1, is feasible for all
states reached over the lookahead horizon with probability
at least 1− ε, where ε is a free parameter to be tuned by the
control designer in service of improving performance.

It is important to note that while the particular choice
of ε is an adjustable parameter, this constraint is necessary
to adequately model the future evolution of the plant. The
nature of our system model dictates that at each time t,
the control ut applied to the plant be energy feasible,
i.e. obey the constraint (3). If at a particular time t, the
implemented ut is chosen so as to be optimal with respect
to planned future controls which are not energy feasible
with high probability, it will cause the implemented controls
at future times to deviate from the anticipated plan with
high probability. As such, we should expect that choosing
ε too large has the effect of generating controls which are
overly-myopic, with performance depending highly on the
realizations experienced. If ε is chosen too small, we should
expect the controller to behave too conservatively, unable to
incorporate into its plan even a slight risk that energy might
run out. We observe this in the simulations (Section IV).

A. CCOCP for a Fixed Scenario
In this subsection, we show how to transform the CCOCP

(5) into a convex problem under a fixed scenario, i.e we
consider a deterministic instance of the problem. We do so
both to explicitly demonstrate the role uncertainty plays in
controlling systems with energy harvesting actuators, and
because the fixed-scenario problem is used in Section III-
B as a means to approximate the CCOCP (5), even when
the problem’s stochasticity is not trivial.

Fix some scenario ζ, and let Dζ
t denote the objective

function at time t under the scenario ζ, with Hζ
(j|t) defined

similarly. In this case, we see that the CCOCP becomes the
deterministic optimal control problem

minimize
u∈Uτ−1

Dζ
t (u) (6a)

subject to x(j+|t) = Ax(j|t) +Bu(j|t), (6b)

R(j+|t) = JR(j|t) +Hζ
(j|t) − C(u(j|t))K

Rcap
0 , (6c)

C(u(j|t)) ≤ R(j|t), (6d)

which, as stated, is nonconvex, due to the nonlinear dynamics
of the energy reserve propagation process {Rt}, denoted here
as (6c). From this, it may at first seem as though the problem
is inherently difficult, as the nonconvexity present in (6) may
be irremovable. This is not the case, as we now show.

Let Uζ denote the feasible set of (6), and with evolution
governed by a particular scenario ζ. We now show that Uζ is
convex for all choices ζ. In particular, the next result shows
that enforcing the feasibility constraint u ∈ Uζ is equivalent
to enforcing O(τ2) convex inequality constraints, in addition
to enforcing that u ∈ Uτ−1.

Lemma 1 (Convex Feasible Set Representation) Let Uζ
be the set of control signals u ∈ Uτ−1 which are feasible to
the fixed scenario optimal control problem (6) with scenario
ζ. A control signal u ∈ Uτ−1 is in Uζ if and only if it satisfies
the system of inequalities

j∑
k=0

C(u(k|t)) ≤ R(0|t) +

j−1∑
k=0

Hζ
(k|t); (7a)

j∑
k=k0

C(u(k|t)) ≤ Rcap +

j−1∑
k=k0

Hζ
(k|t); (7b)

for all k0 ∈ [j] and all j ∈ [τ − 1]0. Moreover, since C is
assumed to be convex, the fixed-uncertainty CCOCP (6) is a
convex optimization problem.

Note that showing (6) to be convex can be done by way
of an alternative argument. If one neglects the non-negativity
constraints of the projection defining the dynamics of {Rt},
one can show that with respect to u, each R(j|t) is a concave
function, by noting that it is defined as a minimum of a
constant and a concave function of u. In so doing, one may
eliminate the nonlinear equality constraints from (6), and add
explicit non-negativity constraints for each R(j|t). While this
argument is elegant, it suffers from the fact that R(j|t) is a
non-differentiable function of u regardless of the form of the
energy function C, and is indeed an implicit function of ζ as
well. Both of these complicate the efficient solution of the
resulting optimization problem.

The inequality representation (7) of the feasible set pre-
sented in Lemma 1 avoids both drawbacks. It makes clear
that the curvature properties of C are inherited immediately
by the feasible set: if C is an affine function, then the feasible
set of (6) is a polyhedron, if C is a quadratic function,
then the feasible set of (6) is an ellipsoid, and so forth.
This is important, as optimization over arbitrary convex
sets can be computationally challenging, especially when the
functions defining the constraint sets are non-differentiable,
as they would be with the mentioned alternative construction.
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Additionally, it provides a representation in which the role of
the scenario ζ decouples from the remainder of the problem,
a feature we exploit in Section III-B.

B. Scenario-based MPC for EHS

In this subsection, we use the convex representation of
the fixed-scenario problem in order to construct means of
generating a random convex program which is feasible to the
chance-constrained optimization problem (5) with at least a
chosen confidence β. To do so, we rely on mathematical
results which are well-known, which explore the relation
between randomly generated convex programs, and their
chance-constrained counterparts [17]. These ideas have been
successfully applied to other model predictive control prob-
lems in the past, with their primary practical drawback being
the complexity introduced when the generated scenarios
induce a large set of constraints, as for example in [9], [10],
[12], [13]. This is not a feature of the problem we study.

Fixing a particular choice of confidence β ∈ (0, 1) and
constraint satisfaction ε ∈ (0, 1), a result from the theory
of random convex programming [17, Theorem 1] gives that
selecting the number of scenarios Ns so as to satisfy

β ≤
d−1∑
i=0

(
Ns
i

)
εi(1− ε)Ns−i, (8)

ensures that the chance constraint (5d) is satisfied with at
least probability (1− β), where d is the number of decision
variables in the considered problem (here d = pτ ). It has
also been shown [9, Equation 3] that (8) is implied by the
more explicit inequality Ns ≥ 2

ε ln 1
β + 2d+ 2d

ε ln 2
ε , which

demonstrates that the sample complexity grows at no worse
than a logarithmic rate with respect to β−1, a linear rate with
respect to ε−1, and a linear rate with respect to d. As such,
we may in practice choose β so small as to be very nearly
certain that our chance constraint is satisfied.

Given that we have already shown that for each scenario,
we can represent the CCOCP as a convex optimization pro-
gram with O(τ2) constraints, it follows immediately that we
can construct a random convex program which approximates
(5) with O(τ3) constraints, for fixed constraint violation ε,
and confidence β. By explicitly enumerating the generated
constraints and taking a sample-average approximation to the
objective function, we get the random convex program (RCP)

minimize
u∈Uτ−1

∑
ζ∈Z

Dζ
t (u)N−1

s

subject to u ∈ ∩ζ∈Z{Uζ},
(9)

where the constraints u ∈ Uζ are implemented via the
representation given in Lemma 1. This, however, is not the
best that can be done, as many of the constraints used to
represent the intersection in (9) by way of the representation
given in Lemma 1 are redundant.

The structure of the problem allows us to compute a more
efficient representation by minimizing the right-hand side
over the scenario set. This fact is formalized as follows.

Lemma 2 (Reduced Constraint Representation) Fix some
set of sampled scenarios Z. Define the Z-reduced set of

control signal constraints UZ as the set of control signals
u ∈ Uτ−1 which satisfy

j∑
k=0

C(u(k|t)) ≤ R(0|t) + min
ζ∈Z

{
j−1∑
k=0

Hζ
(k|t)

}
; (10a)

j∑
k=k0

C(u(k|t)) ≤ Rcap + min
ζ∈Z

{
j−1∑
k=k0

Hζ
(k|t)

}
; (10b)

for all k0 ∈ [j]0, and all j ∈ [τ − 1]0. A control signal u ∈
Uτ−1 is feasible to (9) if and only if it is in UZ .

Note that Lemma 2 follows immediately from Lemma 1,
and noting that since the constraints must be valid for all
scenarios, they must hold for the minimal values as well.
Combining Lemma 2 with earlier discussion immediately
results in the following, highlighting our ability to efficiently
find controls which are feasible to (5) with high probability.

Theorem 1 (Efficient RCP Relaxation of CCOCP)
Fix some constraint satisfaction probability ε and estimation
confidence β. Randomly sample a set Z of Ns independent,
identically distributed scenarios ζ,whereNs satisfies (8). The
solution of the random convex program

minimize
u∈Uτ−1

∑
ζ∈Z

Dζ
t (u)N−1

s

subject to u ∈ UZ ,
(11)

where UZ is defined as in Lemma 2, is feasible to the chance-
constrained optimal control problem (5) with probability at
least (1− β).

Note that a key feature of the representation of the
optimization problem given in Theorem 1 is that the program
is size invariant with respect to the number of scenarios
considered to approximate the constraints. This is in contrast
to many prior uses of scenario-based optimization ideas in
model predictive control, wherein the number of constraints
often grows linearly with the number of scenarios used [10],
[12], [13]. This issue causes many potential applications
of scenario-based optimization ideas to generate random
convex programs which are large in the context of their
application, and as such prevent their efficient use. It is
a remarkable feature of the problem at hand that no such
difficulties are encountered. However, it is not unique to this
setting, as a similar feature has been shown for stochastic
model predictive control with plants subject to stochastic
disturbances, with chance constraints enforcing the state to
remain in a polytope [18]. The key feature needed to arrive
at such a representation is an efficient method for identifying
redundant constraints, given a set of sampled scenarios.

Theorem 1 provides us with a road-map for the efficient
implementation of a stochastic model predictive controller
which addresses the task stated in Section II. Specifically, at
each time t, we observe the plant state xt and the energy
reserve state Rt, and generate a set of scenarios Z from the
oracles simulating the target and energy harvesting processes.
Then, we generate the reduced RCP (11), solve it, and apply
the input corresponding to the current time. As U is assumed
to contain the origin, and C is assumed to be definite with
respect to the origin, it follows that (11) is feasible, no matter
the states of xt and Rt. We see in Section IV that applying
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this procedure produces good results, provided the constraint
violation probability (equivalently, the number of scenarios
used to approximate the chance constraints) is tuned well.

IV. SIMULATED APPLICATION

In this section, we develop a detailed simulation of an
example application. Specifically, we consider the problem
of actuating a mass with a DC motor, by way of constant
current control, with energy arriving in the system’s battery
by way of a periodic stochastic source. Abstractly, this can
be considered as a generic model for a robot operating in a
remote environment, recharging via a solar cell, tasked with
regulating its position. Concretely, such a situation may well
be encountered by a mobile sensor, which needs to move in
order to better observe a moving object, e.g. a wild animal.

A. Plant Modeling
We study the case of a robot with linear dynamics, which

are expressed by the following dynamical relation:

Mÿ + F ẏ = K~i, (12)

in which M is a mass matrix, which models the inertia of the
mechanical part of the system, F is a drag coefficient matrix,
which models the effect of friction on the mechanical part of
the system, and K is a matrix of motor characteristics, which
map the current through the motor to the force vector being
applied to the system. Note that the dynamics expressed
by (12) can be seen as following directly from balancing
the forces applied by the motor, given by K~i, against the
acceleration force Mÿ, and the drag force F ẏ.

Solving (12) for dynamics on the plant state x when the
motor current vector ~i is taken to be the control signal, we
see that the evolution of x = [ẏT , yT ]T is described by

d

dt

[
ẏ
y

]
=

[
−M−1F 0

I 0

] [
ẏ
y

]
+

[
M−1K

0

]
u, (13)

where we have implicitly assumed that M is invertible. By
fixing a particular control u and integrating (13) forward for
∆t seconds, we see that x(∆t) satisfies

x(∆t) = eAc∆tx(0) +

∫ ∆t

0

eAc(∆t−σ)Bcudσ, (14)

where we have defined

Ac =,

[
−M−1F 0

I 0

]
, Bc ,

[
M−1K

0

]
,

and the exponential is the matrix exponential function (see,
e.g., [19, Lecture 6]). Consequently, the discrete-time system
x+ = Ax+Bu, with A , eAc∆t, B ,

∫∆t

0
eAc(∆t−σ)Bcdσ,

matches the continuous-time system exactly, where time is
incremented by ∆t units per step.

We study the case in which the motors are supplied by
a constant-voltage battery, and as such, basic circuit theory
tells us that the power consumed by the motor at time t
when driven by a current ut is given by the expression
P (t) = VB‖ut‖1, where VB is the electrical potential of the
battery, assumed to be constant. Integrating the power of the
control signal over the control time yields the energy cost

C(u) ,
∫ ∆t

0

VB‖u(σ)‖1dσ = ∆tVB‖u‖1. (15)

As all norms are convex functions and definite with respect
to the origin, it follows that C is a convex function of u,
and is definite with respect to the origin. Additionally, since
constraints involving non-negative combinations of one 1-
norms can be efficiently represented as small systems of
affine constraints, the random convex programs required
for implementation can be represented as convex quadratic
optimization problems with affine constraints, which admit
several efficient solution algorithms [20].

This derivation highlights an important general principle.
Whenever the map which takes the control signal to the
power consumed is convex and definite, the energy function
C is convex and definite as well. We expect that this relation
will hold for a wide variety of systems, though verifying this
explicitly in diverse contexts is left as a task for future work.

B. Harvest Source Modeling
We assume the plant is supplied with energy from a

stochastic, periodic source, which is a model for charging
from a solar cell. Letting S denote the maximum charging
amount achieved by the system (say, at solar noon), T denote
the number of control intervals considered over the course
of a day, and Lt be the state of the cloud loss process taking
values on some subset of the positive integers L = [k], the
dynamics of {Ht} satisfy

Ht = S

s
sin

(
2πt

T

)
− (Lt − 1)

k − 1

{∞

0

. (16)

Note that the the assumption that solar intensity varies as a
trigonmetric function of time is based on established models
[21], where the particular form of the function depends on
the time of year, and location where the intensity is to
be measured. The simulations we show here in this paper
consider the case in which S = 0.01, T = 48, and {Lt} has
four states, with the transition matrix

L =

0.30 0.35 0.00 0.00
0.70 0.30 0.35 0.00
0.00 0.35 0.30 0.70
0.00 0.00 0.35 0.30

 .
C. Application Simulation Results

We now evaluate the performance of the proposed control
framework with respect to an example system, by way of
numerical simulation. For simplicity, we focus here on the
case in which the mass is moving along a one-dimensional
track, and is moved by a single DC motor, which provides
force for the purposes of movement in both directions along
the track. As a practical example of such a system, we may
think of a camera moving along a track so as to adequately
surveil a large area for the presence of intruders.

We take the mass of the system to be 5 kilograms, the drag
coefficient to be 10−3 Newtons per meter per second, and the
torque constant of the motor to be 10−1 Newtons per ampere.
We allow the motor current to vary from −10 milliamperes
to 10 milliamperes. We assume the battery supplying energy
to the motor to be operating at a constant electrical potential
of 12 volts. Evaluating the expressions derived in Section IV-
A for (A,B) using MATLAB’s built-in c2d function with
∆t = 30 minutes, we arrive at the system model

A =

[
0.700 0
1, 512 1

]
, B =

[
0.03
28.84

]
, C(u) = 21.60‖u‖1,
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Fig. 1: A sample path of the realized controller performance. The
target process is given by a red dashed line, with solid red lines
giving a visual reference for a cost penalty of one unit on either
side of the target. Notably, we see that the controller chooses to
save energy during the day so as to be able to use it to reach the
target at night. Hence, the designed controller behaves intelligently
with respect to the nature of the energy source.

where the control signal u is the motor current measured in
milliamperes, and the energy function is measured in joules.
For simplicity, we consider a target that jumps deterministi-
cally from the position 2 to the position −2 every 6 hours.

Figure 1 reports the results of the simulated system with a
lookahead of 48 time steps, i.e. 24 hours, and in which 3, 100
scenarios are used to approximate the chance constraints, cor-
responding to a choice of 0.1 probability of chance constraint
violation with confidence β = 10−3. Note that the number of
scenarios was tuned in order to optimize performance, and
that 3, 100 was an intermediate value among those tested.
While defining a formal method for tuning the performance
of the controller is left for future work, we expect optimal
values to moderate, achieving a balance between aggression
and conservatism. We see that when properly tuned, the
controller is intelligent enough so as to avoid attempting to
match the target trajectory precisely during the day so as to
conserve energy for moving at night, when energy is scarce.

V. CONCLUSIONS AND FUTURE WORK

We have presented a model predictive control method for
computing controls for the actuators of energy harvesting
devices. The method presented incorporates knowledge of a
model for how energy arrives in order to inform the design
of controls, by way of approximating a chance constraint
enforcing the energy feasibility of the signal. Importantly,
it was shown that the structure of the problem studied here
allows for an optimization formulation whose constraint set
is size invariant with respect to the number of scenarios used,
which enables its efficient solution.

There are several avenues for interesting future work. The
material presented here only covers the case in which the
system’s plant follows standard linear dynamics, however
many interesting systems are inherently nonlinear, and as
such, accommodations for such situations must be made,
even if only in an ad hoc way. The number of scenarios used
to approximate the constraints was chosen here in order to

guarantee the satisfaction of a chance constraint with high
probability. However, it may well be the case that tuning the
number of scenarios considered may be best done in order
to optimize closed-loop system performance in terms of a
specified objective. Such tuning seems entirely possible, but
falls outside of the scope of the work considered here.

ACKNOWLEDGMENTS

This work is supported by the TerraSwarm Research Center, one
of six centers supported by the STARnet phase of the Focus Center
Research Program (FCRP), a Semiconductor Research Corporation
program sponsored by MARCO and DARPA.

REFERENCES

[1] M. A. Viscio, E. Gargioli, J. A. Hoffman, P. Maggiore, A. Messidoro,
and N. Viola, “A methodology to support strategic decisions in future
human space exploration: From scenario definition to building blocks
assessment,” Acta Astronautica, vol. 91, pp. 198–217, 2013.

[2] S. H. Liang, “Sensor Networks, The Sensor Web, and the Internet of
Things,” in The International Encyclopedia of Geography: People, the
Earth, Environment and Technology, pp. 1–17, 2017.

[3] A. Ghaffarkhah and Y. Mostofi, “Path Planning for Networked Robotic
Surveillance,” IEEE Transactions on Signal Processing, vol. 60, no. 7,
pp. 3560–3575, 2012.

[4] S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover,
and K. Huang, “Energy Harvesting Wireless Communications: A
Review of Recent Advances,” IEEE Journal on Selected Areas in
Communications, vol. 33, no. 3, pp. 360–381, 2015.

[5] S. Knorn and S. Dey, “Optimal Sensor Transmission Energy Allocation
for Linear Control Over a Packet Dropping Link with Energy Harvest-
ing,” Conference on Decision and Control (CDC), vol. 48, no. Cdc,
pp. 1199–1204, 2015.

[6] O. Ozel and V. Anantharam, “State Estimation in Energy Harvesting
Systems,” in Information Theory and Applications Workshop, (La
Jolla, CA, USA), pp. 1–9, IEEE, 2016.

[7] N. J. Watkins, K. Gatsis, C. Nowzari, and G. J. Pappas, “Battery
Management for Control Systems with Energy Harvesting Sensors,”
in Proceedings of the IEEE Conference on Decision and Control,
(Melbourne, Australia), pp. 4538–4543, IEEE, 2017.

[8] N. J. Watkins, K. Gatsis, C. Nowzari, and G. J. Pappas, “Stability
of Control Systems with Feedback from Energy Harvesting Sensors,”
arXiv preprint, no. arXiv:1712.02847, pp. 1–15, 2017.

[9] G. Calafiore and M. Campi, “The Scenario Approach to Robust
Control Design,” IEEE Transactions on Automatic Control, vol. 51,
no. 5, pp. 742–753, 2006.

[10] G. Schildbach, L. Fagiano, C. Frei, and M. Morari, “The scenario ap-
proach for Stochastic Model Predictive Control with bounds on closed-
loop constraint violations,” Automatica, vol. 50, no. 12, pp. 3009–
3018, 2014.

[11] G. Schildbach and M. Morari, “Scenario-based model predictive con-
trol for multi-echelon supply chain management,” European Journal
of Operational Research, vol. 252, no. 2, pp. 540–549, 2016.

[12] G. C. Calafiore and L. Fagiano, “Stochastic model predictive control
of LPV systems via scenario optimization,” Automatica, vol. 49, no. 6,
pp. 1861–1866, 2013.

[13] J. Matusko and F. Borrelli, “Scenario-Based Approach to Stochastic
Linear Predictive Control,” in Proceedings of IEEE Conference on
Decision and Control, pp. 5194–5199, 2012.

[14] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on Stochastic
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