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Abstract Approximate simulation relations have recently been introduced as a pow-
erful tool for the approximation of discrete and continuous systems. In this paper, we
extend this abstraction framework to hybrid systems. Using the notion of simulation
functions, we develop a characterization of approximate simulation relations which
can be used for hybrid systems approximation. For several classes of hybrid systems,
this characterization leads to effective algorithms for the computation of approxi-
mate simulation relations. An application in the context of reachability analysis is
shown.
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1 Introduction

Approximation of purely discrete systems has traditionally been based on lan-
guage inclusion and equivalence with notions such as simulation or bisimulation
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relations (Clarke et al. 2000; Milner 1989). These concepts have been very useful
for simplifying complex problems such as safety verification or controller synthesis.
More recently, they have been extended to the framework of continuous and hybrid
systems (Haghverdi et al. 2005; Pappas 2003; Pola et al. 2004; van der Schaft 2004)
allowing to consider the approximation of systems in a unified (discrete/continuous)
manner. Applications of simulation and bisimulation relations to verification or
control problems can be found for instance in Alur et al. (1995, 2000), Belta et al.
(2005) and Tabuada (2007)

When dealing with continuous and hybrid systems, typically observed over the
real numbers with possibly noisy observations, the usual notions based on exact
language inclusion are quite restrictive and not robust. The notion of distance
between languages is much more adequate in this context. In Girard and Pappas
(2007a), we proposed a framework for system approximation based on approximate
versions of simulation relations. Instead of requiring that the observations of a system
and its approximation are equal, we require that the distance between them remains
bounded by some parameter called precision of the approximate simulation. This
approach not only defines more robust relations between systems but also allows
more significant complexity reductions in the approximation process. This frame-
work has been applied to nonlinear autonomous systems (Girard and Pappas 2005)
and constrained linear systems (Girard and Pappas 2007b). Computational methods
have been developed to quantify the distance between the observed trajectories of
two systems. In Julius (2006); Julius et al. (2006), the theoretical and computational
frameworks have been extended to handle stochastic dynamical and hybrid systems
with purely stochastic (i.e. Markovian) jumps. Related work on approximate versions
of simulation and bisimulation relations has been done for quantitative transition
systems (de Alfaro et al. 2004) or labeled Markov processes (Desharnais et al. 2004).

In this paper, we apply our approximation framework to hybrid systems. Using
the notion of simulation functions (Girard and Pappas 2007a), we develop a charac-
terization of approximate simulation relations which can be used for hybrid systems
approximation. For several classes of hybrid systems, this characterization leads to
effective algorithms for the computation of approximate simulation relations. An
application in the context of reachability analysis is shown.

2 Approximate simulation relations for transition systems

The notion of approximate simulation relation has been developed in the framework
of labelled transition systems in Girard and Pappas (2007a). In this section, the main
results are reviewed.

2.1 Labelled transition systems

Labelled transition systems allow us to model, in a unified setting, discrete, continu-
ous and hybrid systems. Labelled transition systems can be seen as automata, possibly
with an infinite number of states or transitions.
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Definition 1 A labelled transition system with observations is a tuple T =(Q, �,→,

Q0, �, 〈〈.〉〉) that consists of:

– A set Q of states,
– A set � of labels,
– A transition relation →⊆ Q × � × Q,
– A set Q0 ⊆ Q of initial states,
– A set � of observations, and
– An observation map 〈〈.〉〉 : Q → �.

A state trajectory of T is a sequence of transitions,

q0 σ 0→ q1 σ 1→ q2 σ 2→ . . . , where q0 ∈ Q0.

For a given initial state and sequence of labels, there may exist several state
trajectories of T. Thus, the systems we consider are possibly nondeterministic (but
not stochastic). The associated external trajectory

π0 σ 0→ π1 σ 1→ π2 σ 2→ . . . , where π i = 〈〈qi〉〉
describes the evolution of the observations under the dynamics of the labelled
transition system. The set of external trajectories of the labelled transition system
T is called the language of T and is denoted L(T). The subset of � reachable by the
external trajectories of T is noted Reach(T):

Reach(T) =
{
π ∈ �

∣∣∣∣ ∃π0 σ 0→ π1 σ 1→ π2 σ 2→ · · · ∈ L(T), ∃ j ∈ N, π j = π

}
.

An important problem for transition systems is the safety verification problem
which consists in checking whether the reachable set Reach(T) intersects a set of
observations �U associated with unsafe states.

2.2 Approximate simulation relations

Exact simulation relations between two labelled transition systems require that
their observations are (and remain) identical (Clarke et al. 2000; Milner 1989).
Approximate simulation relations are less rigid since they only require that the
distance between the observations of both systems is (and remains) bounded by
some parameter called precision. Let T1 = (Q1, �1, →1, Q0

1,�1, 〈〈.〉〉1) and T2 =
(Q2, �2,→2, Q0

2, �2, 〈〈.〉〉2) be two labelled transition systems with the same set
of labels (�1 = �2 = �) and the same set of observations (�1 = �2 = �). Let us
assume that the set of observations � is a metric space; d� denotes the metric on �.

Definition 2 A relation Sδ ⊆ Q1 × Q2 is a δ-approximate simulation relation of T1

by T2 if for all (q1, q2) ∈ Sδ :

1. d� (〈〈q1〉〉1, 〈〈q2〉〉2) ≤ δ,
2. For all q1

σ→1 q′
1, there exists q2

σ→2 q′
2 such that (q′

1, q′
2) ∈ Sδ .
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The parameter δ is called the precision of the approximate simulation relation.
Note that for precision δ = 0, we recover the usual notion of exact simulation relation.

Definition 3 T2 approximately simulates T1 with the precision δ (noted T1 
δ T2),
if there exists Sδ , a δ-approximate simulation relation of T1 by T2 such that for all
q1 ∈ Q0

1, there exists q2 ∈ Q0
2 such that (q1, q2) ∈ Sδ .

If T2 approximately simulates T1 with the precision δ then the language of T1 is
approximated with precision δ by the language of T2.

Theorem 1 If T1 
δ T2, then for all external trajectories of T1,

π0
1

σ 0→ π1
1

σ 1→ π2
1

σ 2→ . . . ,

there exists an external trajectory of T2 with the same sequence of labels

π0
2

σ 0→ π1
2

σ 1→ π2
2

σ 2→ . . .

such that for all i ∈ N, d�(π i
1, π

i
2) ≤ δ.

Proof There exists a state trajectory of T1, q0
1

σ 0→ q1
1

σ 1→ q2
1

σ 2→ . . . , such that for all
i ∈ N, 〈〈qi

1〉〉1 = π i
1. q0

1 ∈ Q0
1, then there exists q0

2 ∈ Q0
2 such that (q0

1, q0
2) is in the

δ-approximate simulation relation Sδ . Using the second property of Definition 2, it
can be shown by induction that there exists a state trajectory of T2,

q0
2

σ 0→ q1
2

σ 1→ q2
2

σ 2→ . . . such that ∀i ∈ N, (qi
1, qi

2) ∈ Sδ.

Let π0
2

σ 0→ π1
2

σ 1→ π2
2

σ 2→ . . . be the associated external trajectory of T2 (for all i ∈ N,
〈〈qi

2〉〉2 = π i
2). Then, we have for all i ∈ N,

d�(π i
1, π

i
2) = d�(〈〈qi

1〉〉1, 〈〈qi
2〉〉2) ≤ δ. �


Approximation of labelled transition systems based on approximate simulation
relations is useful for solving problems involving reachability analysis such as the
safety verification problem. Indeed, from Theorem 1, it is straightforward that if T2

approximately simulates T1 with the precision δ then Reach(T1) ⊆ N�(Reach(T2), δ)

where N�(., δ) denotes the δ-neighborhood for the metric d�. Thus, given an
unsafe set �U , if Reach(T2) ∩ N�(�U , δ) = ∅, it follows that Reach(T1) ∩ �U = ∅.
Therefore, the safety of T1 can be verified using the approximate system T2.

3 Hybrid systems as transition systems

In this section, we introduce the rather general class of hybrid systems that we
consider and show that these can be seen as transition systems.
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Definition 4 A hybrid system is a tuple H = (L, n, p, E, F, Inv, G, R, Q0) where

– L is a finite set of locations or discrete states. |L| denotes the number of elements
of L. Without loss of generality, we assume that L = {1, . . . , |L|}.

– n : L → N, where for every l ∈ L, nl = n(l) is the dimension of the continuous
state space in the location l. The set of states of the hybrid system is

Q =
⋃
l∈L

{l} × R
nl .

– p : L → N, where for every l ∈ L, pl = p(l) is the dimension of the continuous
observation of the hybrid system in the location l. The set of observations of the
hybrid system is

� =
⋃
l∈L

{l} × R
pl .

– E ⊆ L × L is the set of events or discrete transitions.
– F = {Fl| l ∈ L} defines the continuous dynamics for each location. For each l ∈

L, Fl is a triple ( fl, gl, Ul) where fl : Rnl × Ul → Rnl , gl : Rnl → Rpl and Ul ⊆
Rml is a compact set of internal inputs which can be seen as disturbances and
modelling uncertainties rather than control inputs. While the discrete part of the
state is l, the continuous variables (i.e. the continuous part x of the state and the
continuous part y of the observation) evolve according to{

ẋ(t) = fl(x(t), u(t)), u(t) ∈ Ul

y(t) = gl(x(t)).

– Inv = {Invl| l ∈ L} defines an invariant set for each location. For each l ∈ L,
Invl ⊆ Rnl constrains the value of the continuous part of the state while the
discrete part is l.

– G = {Ge| e ∈ E} defines the guard for each discrete transition. For each e =
(l, l′) ∈ E, Ge ⊆ Invl . The discrete transition e is enabled when the continuous
part of the state is in Ge.

– R = {Re| e ∈ E} defines the reset map for each discrete transition. For each e =
(l, l′) ∈ E, Re : Ge → 2Invl′ . When the event e occurs, the continuous part of the
state is reset using the map Re.

– Q0 ⊆ Q is the set of initial states:

Q0 =
⋃
l∈L

{l} × I0
l , with I0

l ⊆ Invl.

The semantics of a hybrid system is well established (see for instance Alur
et al. 2000) and will become clear with the definition of the labelled transition
system associated to H. In the spirit of Alur et al. (1995), we can derive from H
the nondeterministic transition system T = (Q, �,→, Q0,�, 〈〈.〉〉) where the set of
states Q, the set of observations �, and the set initial states Q0 are the same as
in the hybrid system H. The set of labels is � = R+ ∪ {τ } where the labels in R+
represent the durations labelling the continuous transitions while the symbol τ is
used to label discrete transitions occurring instantaneously. The observation map is
defined naturally by

〈〈(l, x)〉〉 = (l, gl(x)).
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The transition relation → is given by:

1. Continuous transitions: For t ∈ R+, (l, x)
t→ (l, x′) iff there exists a measurable

function u(.) and an absolutely continuous function z(.) such that z(0) = x, z(t) =
x′ and for all s ∈ [0, t],

ż(s) = fl(z(s), u(s)), with u(s) ∈ Ul and z(s) ∈ Invl .

2. Discrete transitions: (l, x)
τ→ (l′, x′) iff (l, l′) = e ∈ E, x ∈ Ge and x′ ∈ Re(x).

The set of observations � of the hybrid system H is equipped with the following
metric d�:

d� ((l1, y1), (l2, y2)) =
{ ‖y1 − y2‖, if l1 = l2

+∞, if l1 �= l2

where ‖.‖ is the usual Euclidean norm.
In the following, we give a characterization of approximate simulation relations,

suitable for hybrid systems; thus showing that the approximation framework pre-
sented in Section 2 can be applied in an effective way to hybrid systems.

4 Approximate simulation relations for hybrid systems

Let Hi = (Li, ni, pi, Ei, Fi, Invi, Gi, Ri, Q0
i ), (i = 1, 2) be two hybrid systems and

Ti = (Qi, �i,→i, Q0
i , �i, 〈〈.〉〉i), (i = 1, 2) be the associated labelled transition sys-

tems. We assume that T1 and T2 have the same set of observations �1 = �2 = �.
Particularly, this implies that the set of locations and the dimensions of the continu-
ous observations are the same for both systems (i.e. L1 = L2 = L, p1 = p2 = p).

We will further assume that the discrete dynamics of both systems are the same
(i.e. E1 = E2 = E). The approximation of the discrete dynamics of a hybrid system
has been considered for systems with purely stochastic jumps (Julius 2006). In this
paper, we choose to concentrate on the approximation of the continuous dynamics
and reserve the approximation of the discrete dynamics for future research. In
this section, we provide a characterization of approximate simulation relations thus
establishing sufficient conditions so that H2 approximately simulates H1.

4.1 Simulation functions

Let l ∈ L, let n1,l , n2,l be the dimensions of the continuous part of the state of
H1 and H2 in the location l. Let F1,l = ( f1,l, g1,l, U1,l) and F2,l = ( f2,l, g2,l, U2,l) be
the continuous dynamics of H1 and H2 associated to the location l. We define the
following notations:

x =
[

x1

x2

]
, fl(x, u1, u2) =

[
f1,l(x1, u1)

f2,l(x2, u2)

]
,

gl(x) = g1,l(x1) − g2,l(x2).

In Girard and Pappas (2007a), we showed that approximate simulation rela-
tions could be characterized efficiently using the notion of simulation functions.
Intuitively, a simulation function is a function bounding the distance between the
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observations and non-increasing under the simultaneous execution of the two con-
tinuous dynamics.

Definition 5 A differentiable function Vl : Rn1,l × Rn2,l → R+ is a simulation func-
tion of F1,l by F2,l if for all x ∈ Rn1,l × Rn2,l , the following equations hold

Vl(x) ≥ ‖gl(x)‖, (1)

sup
u1∈U1,l

inf
u2∈U2,l

∇Vl(x)T fl(x, u1, u2) ≤ 0. (2)

Remark 1 There are similarities between the notions of simulation function and of
robust control Lyapunov function (Freeman and Kokotovic 1996; Liberzon et al.
2002) for output stabilization of the composite system given by vector field fl and
observation map gl . Let us consider the input u1(.) as a disturbance and the input
u2(.) as a control variable in Eq. 2. Then, the interpretation of this inequality is that
for all disturbances there exists a control input such that the simulation function
decreases. This means that the choice of u2(.) can be made with the knowledge of
u1(.). In comparison, a robust control Lyapunov function requires that there exists
a control u2(.) such that for all disturbances u1(.), the function decreases. Thus, it
appears that robust control Lyapunov functions require stronger conditions than
simulation functions.

Simulation functions satisfy the following property which will be useful in charac-
terizing approximate simulation relations for hybrid systems. A detailed proof of this
result can be found in Girard and Pappas (2007b).

Proposition 1 Let Vl be a simulation function of F1,l by F2,l . Then, for all (x1, x2) ∈
Rn1,l × Rn2,l , for all t ∈ R+, for all measurable inputs u1(.), there exists a measurable
input u2(.) such that

∀s ∈ [0, t], Vl(z1(s), z2(s)) ≤ Vl(x1, x2) (3)

where

żi(s) = fi,l(zi(s), ui(s)), ui(s) ∈ Ui,l, zi(0) = xi, i = 1, 2.

4.2 Approximate simulation relations

In this section, we give a characterization of approximate simulation relations for
hybrid systems using the notion of simulation function. Let us assume that for each
location l ∈ L, there exists a simulation function Vl of the continuous dynamics
F1,l by F2,l . We define the following sets which can be thought as some kind of
neighborhoods associated with the simulation functions. For all x1 ∈ Rn1,l , β ≥ 0,

Nl(x1, β) = {x2 ∈ R
n2,l | Vl(x1, x2) ≤ β}.

We can now state the main result of the paper.
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Theorem 2 For all l ∈ L, let Vl be a simulation function of F1,l by F2,l . Let β1, . . . , β|L|
be positive numbers such that the following conditions hold:

(a) For all l ∈ L, Nl(Inv1,l, βl) ⊆ Inv2,l ,
(b) For all e = (l, l′) ∈ E, Nl(G1,e, βl) ⊆ G2,e,
(c) For all e = (l, l′) ∈ E,

βl′ ≥ max
x1 ∈ G1,e

Vl(x1, x2) ≤ βl

(
max

x′
1∈R1,e(x1)

min
x′

2∈R2,e(x2)
Vl′(x′

1, x′
2)

)
.

(d) For all l ∈ L,

βl ≥ max
x1∈I0

1,l

min
x2∈I0

2,l

Vl(x1, x2),

Let δ = max(β1, . . . , β|L|). Then, the relation Sδ ⊆ Q1 × Q2 defined by

Sδ = {(l1, x1, l2, x2)| l1 = l2 = l, Vl(x1, x2) ≤ βl}
is a δ-approximate simulation relation of T1 by T2 and T1 
δ T2.

Proof Let (l1, x1, l2, x2) ∈ Sδ , then l1 = l2 = l and Vl(x1, x2) ≤ βl . From Eq. 1, we
have that ‖gl,1(x1) − gl,2(x2)‖ ≤ βl ≤ δ. Hence, the first property of Definition 2
holds.

Let (l1, x1)
t→ (l1, x′

1), then there exists an input u1(.) and a function z1(.) such that
z1(0) = x1, z1(t) = x′ and for all s ∈ [0, t], u1(s) ∈ U1,l , z1(s) ∈ Inv1,l and

ż1(s) = fl,1(z1(s), u1(s)).

From Proposition 1, we know that there exists an input u2(.) and a function z2(.) such
that z2(0) = x2, and for all s ∈ [0, t], u2(s) ∈ U2,l ,

ż2(s) = fl,2(z2(s), u2(s))

and V(z1(s), z2(s)) ≤ V(x1, x2) ≤ βl . Then, assumption (a) of Theorem 2 ensures that

for all s ∈ [0, t], z2(s) ∈ Invl,2. Let x′
2 = z2(t), we have (l2, x2)

t→ (l2, x′
2) and since

Vl(x′
1, x′

2) ≤ βl , (l1, x′
1, l2, x′

2) ∈ Sδ .
Let (l1, x1)

τ→ (l′1, x′
1), then there exists e = (l1, l′1) such that x1 ∈ G1,e and x′

1 ∈
R1,e(x1). Assumption (b) of Theorem 2 ensures that x2 ∈ G2,e. From assumption
(c) of 2, we have that there exists x′

2 ∈ R2,e(x2), such that Vl′(x′
1, x′

2) ≤ βl′ where
l′ = l′1. Then, (l2, x2)

τ→ (l′2, x′
2) with l′2 = l′ and (l′1, x′

1, l′2, x′
2) ∈ Sδ . Therefore, Sδ is

a δ-approximate simulation relation of T1 by T2.
Finally, let (l1, x1) ∈ Q0

1, then x1 ∈ I0
1,l where l = l1. From assumption (d) of

Theorem 2, there exists x2 ∈ I0
2,l , such that Vl(x1, x2) ≤ βl . Then, (l2, x2) ∈ Q0

2 with
l2 = l and (l1, x1, l2, x2) ∈ Sδ . Then T1 
δ T2. �


It is clear that the scalars β1, . . . , β|L| cannot be chosen independently as they are
linked by assumption (c) which can be interpreted as a condition of limitation of the
expansion of the approximation error propagating through reset maps. Thus, it is not
necessarily the case that numbers such that assumptions of the Theorem hold, exist.
However, for several classes of hybrid systems we can guarantee their existence and
derive procedures to compute them.
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4.2.1 Acyclic hybrid systems

Let us consider hybrid systems H1 and H2 such that their common graph (L, E) does
not contain any cycle. Without loss of generality, we can assume that the discrete
states are numbered in a way such that:

(l, l′) ∈ E =⇒ l < l′.

Then, the scalars β1, . . . , β|L| can be computed in an inductive way. Start by comput-
ing β1 by solving:

β1 = max
x1∈I0

1,1

min
x2∈I0

2,1

V1(x1, x2).

Then, for l′ ∈ {2, . . . , |L|}, we can compute βl′ from β1, . . . , βl′−1 by choosing βl′ =
max(γ1,l′ , . . . , γl′,l′) where

γl′,l′ = max
x1∈I0

1,l′
min

x2∈I0
2,l′

Vl′(x1, x2)

and for l < l′, γl,l′ = 0 if e = (l, l′) /∈ E or if e = (l, l′) ∈ E,

γl,l′ = max
x1 ∈ G1,e

Vl(x1, x2) ≤ βl

(
max

x′
1∈R1,e(x1)

min
x′

2∈R2,e(x2)
Vl′(x′

1, x′
2)

)
.

Then, it is clear that with these β1, . . . , β|L|, assumptions (c) and (d) of Theorem 2
hold.

4.2.2 Hybrid systems with memoryless resets

We now consider hybrid systems with memoryless resets (i.e. Ri,e(xi) = Ri,e for all
e ∈ E, i = 1, 2), then assumption (c) becomes for all e = (l, l′) ∈ E

βl′ ≥ max
x′

1∈R1,e

min
x′

2∈R2,e

Vl′(x′
1, x′

2).

Then, the numbers β1, . . . , β|L| are not linked anymore and can be computed
independently.

4.2.3 Hybrid systems with contracting resets

Let us assume that the hybrid systems have reset maps that are contracting with
respect to the simulation functions: for all e = (l, l′)∈ E, for all x1 ∈G1,e and x2 ∈G2,e,

max
x′

1∈R1,e(x1)
min

x′
2∈R2,e(x2)

Vl′(x′
1, x′

2) ≤ Vl(x1, x2).

Then, it follows that for all e = (l, l′) ∈ E

max
x1 ∈ G1,e

Vl(x1, x2) ≤ βl

(
max

x′
1∈R1,e(x1)

min
x′

2∈R2,e(x2)
Vl′(x′

1, x′
2)

)
≤ max

x1 ∈ G1,e
Vl(x1, x2) ≤ βl

Vl(x1, x2) ≤ βl.

Then, a sufficient condition for assumption (c) to hold is that for all e = (l, l′) ∈ E,
βl′ ≥ βl . Setting β1 = · · · = β|L| = β, it follows that the assumption (c) holds. The
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common value β must be chosen such that assumption (d) holds. The computation
of β can thus be done in an effective way:

β = max
l∈L

(
max
x1∈I0

1,l

min
x2∈I0

2,l

Vl(x1, x2)

)
.

An interesting subclass of hybrid systems with contracting resets are those with
identity resets (i.e. Ri,e(xi) = xi for all e ∈ E, i = 1, 2) and where we can compute
a common simulation function: V1 = · · · = V|L| = V.

4.3 Approximation of hybrid systems

It is well known that the computational cost of some analysis tasks such as reach-
ability analysis of hybrid systems increases drastically with the complexity of the
continuous dynamics. When analyzing a hybrid system with complex (high order
and/or nonlinear) continuous dynamics, it is interesting to use an approximation of
the system. Based on Theorem 2, we can sketch a procedure to approximate a hybrid
system H1 by another hybrid system H2 with simpler continuous dynamics and to
compute the precision of the approximate simulation relation of T1 by T2.

Firstly, for each location l ∈ L, we approximate the continuous dynamics F1,l by
a simpler continuous dynamics F2,l . The goal of this approximation is to reduce the
complexity of analysis tasks ( e.g. reachability computations). This approximation
can be done using projections (for high order dynamics Girard and Pappas 2007b)
and linearizations (for nonlinear dynamics Girard and Pappas 2005). A human user
can also guide this process using his knowledge on the system. The initial sets I0

2,l and
the reset maps R2,e are then chosen according to the transformation applied to the
continuous dynamics (linearization, projection).

Then, we need to compute the associated simulation functions. Computational
methods have been developed for the class of autonomous nonlinear systems
(Girard and Pappas 2005) and constrained linear systems (Girard and Pappas 2007b).
In Girard and Pappas (2005), for continuous dynamics of the form

{
ẋ(t) = fi,l(x(t))
y(t) = gi,l(x(t))

i = 1, 2 (4)

where fl,i, gl,i are polynomials, it is shown that the simulation function Vl can be
sought as the square root of a positive polynomial. Then, from relaxations of the
inequalities 1 and 2, the simulation function Vl can be computed by solving a sum of
squares program which can be done using the Matlab toolbox SOSTOOLS (Prajna
et al. 2005).

In Girard and Pappas (2007b), for constrained linear dynamics of the form
{

ẋ(t) = Ai,lx(t) + Bi,lui(t), ui(t) ∈ Ui,l

y(t) = Ci,lx(t)
i = 1, 2 (5)

where Ui,l are convex polytopes, it is shown that the simulation function Vl can be
sought under the form Vl(x) = max(

√
xT Mlx, αl) where Ml is a positive semidefinite

symmetric matrix and αl is a positive number. Then, the computation of Vl involves
solving a set of linear matrix inequalities and a quadratic program. The computation
of simulation functions for constrained linear dynamics has been implemented in the
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Fig. 1 Control architecture
of the planar robot. The
continuous controller is given
by Eq. 7 and the hybrid
controller is shown in Fig. 2

Matlab toolbox MATISSE.1 More details on the approximation of the continuous
dynamics can be found in Girard and Pappas (2005, 2007b).

Secondly, we compute positive numbers β1, . . . , β|L| satisfying the assumptions (c)
and (d) of Theorem 2. In the previous section, for several classes of hybrid systems
we provided effective procedures for the computation of such numbers. Then, we
choose the invariants and the guards such that assumptions (a) and (b) of Theorem
2 hold ( e.g. Inv2,l = Nl(Inv1,l, βl) and G2,e = Nl(G1,e, βl) where e = (l, l′)). Then,
from Theorem 2, it follows that T1 
δ T2 with δ = max(β1, . . . , β|L|).

5 Example

In this section, we illustrate our approximation framework in the context of reacha-
bility analysis of a simple planar robot motion. Let us consider a second order model
of a robot:

ÿ1(t) = a(t) (6)

where y1(t) ∈ R2 denotes the position of the robot in a planar environment. Follow-
ing Fainekos et al. (2007), the robot is equipped with a dynamic continuous controller
given by

{
ẇ(t) = v(t)
a(t) = v(t)

2 − 101
400 (y1(t) − w(t)) − ẏ1(t)

(7)

Then, the robot behaves approximately like the first order system

ẏ2(t) = v(t). (8)

The value of the input v(t) ∈ {v1, . . . , v6} (with ‖v1‖ = · · · = ‖v6‖ = 0.2) is com-
puted by a hybrid controller on top of the continuous controller given by Eq. 7.
The control architecture of the robot and the hybrid controller are shown on Figs. 1
and 2.

1MATISSE: Metrics for Approximate TransItion Systems Simulation and Equivalence, Available
from http://www.seas.upenn.edu/~agirard/Software/MATISSE.

http://www.seas.upenn.edu/~agirard/Software/MATISSE
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Fig. 2 Hybrid controller for
the system shown in Fig. 1

We assume that the initial state of the robot is y1(0) ∈ {0} × [4, 6] and ẏ1(0) = 0,
the initial state of the dynamic continuous controller is w(0) = y1(0) and that initially
the hybrid controller is in mode 1. We want to perform a reachability analysis of the
robot motion that is to compute the reachable set of the hybrid system modelling the
motion of the robot. Let us remark that in each mode, the continuous dynamics is a
6-dimensional linear dynamics for which the reachability analysis is quite demanding
in terms of computations.

Thus, we would like to perform the reachability analysis using the approximate
continuous dynamics 8. Following Fainekos et al. (2007), we can check that the
function

V(y1, ẏ1, w, y2) = max

(√
‖y1 − w‖2 + 100‖y1 − w + 2ẏ1‖2, 0.4

)
+ ‖w − y2‖
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Fig. 3 Hybrid system
approximating the system
shown in Fig. 1

is a common simulation function for the continuous dynamics in each mode. We are
in the situation described in the Section 4.2.3 and it is clear that the assumptions
(c) and (d) of Theorem 2 hold with β1 = · · · = β6 = 0.4. We then choose the
invariants and the guards so that assumptions (a) and (b) hold as well. The resulting
approximate hybrid system is shown in Fig. 3. It approximately simulates the system
shown in Fig. 1 with precision 0.4. Let us remark that it is a planar linear hybrid
automata for which reachability analysis is much simpler to perform using a tool
such PHAVer (Frehse 2005).

We performed the reachability analysis for both system. For the original system,
the algorithm does not terminate and we had to stop after a given number of
iterations. The computed set is represented in Fig. 4. For the approximate system,
we can compute exactly the reachable set. It is also represented in Fig. 4. We know
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Fig. 4 Reachable sets of the
original hybrid system (top)
and of its approximation
(bottom). The dashed lines
represent the guards. We can
see that the approximate
hybrid system allows to
conclude that the robot
remains in an annulus
centered around 0
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that the reachable set of the original system is included in the 0.4-neighbourhood of
the reachable set of the approximate system.2 This allows us to guarantee that the
robot will remain forever in an annulus centered around 0.

6 Conclusion

In this paper, we extended the notion of approximate simulation relations to hybrid
systems. We developed a characterization of approximate simulation relations for

2Note that Theorem 1 states approximate inclusion and not approximate equality of the languages.
This is why the precision of the over-approximation of the reachable sets on Fig. 4 is not uniform.
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hybrid systems based on simulation functions for the continuous dynamics. For sev-
eral classes of hybrid systems, we derived effective procedures for the computation of
approximate simulation relations. We showed how our framework could be used to
approximate hybrid systems and a non-trivial example in the context of reachability
analysis was shown.

Future work includes developing more systematic methods to compute approxi-
mate simulation relations for hybrid systems as well as implementing these methods
in the toolbox MATISSE.
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