
A Distributed Auction Algorithm for the Assignment Problem

Michael M. Zavlanos, Leonid Spesivtsev and George J. Pappas

Abstract— The assignment problem constitutes one of the
fundamental problems in the context of linear programming.
Besides its theoretical significance, its frequent appearance in
the areas of distributed control and facility allocation, where
the problems’ size and the cost for global computation and
information can be highly prohibitive, gives rise to the need for
local solutions that dynamically assign distinct agents to distinct
tasks, while maximizing the total assignment benefit. In this
paper, we consider the linear assignment problem in the context
of networked systems, where the main challenge is dealing with
the lack of global information due to the limited communication
capabilities of the agents. We address this challenge by means
of a distributed auction algorithm, where the agents are able
to bid for the task to which they wish to be assigned. The
desired assignment relies on an appropriate selection of bids
that determine the prices of the tasks and render them more
or less attractive for the agents to bid for. Up to date pricing
information, necessary for accurate bidding, can be obtained in
a multi-hop fashion by means of local communication between
adjacent agents. Our algorithm is an extension to the parallel
auction algorithm proposed by Bertsekas et al to the case where
only local information is available and it is shown to always
converge to an assignment that maximizes the total assignment
benefit within a linear approximation of the optimal one.

I. INTRODUCTION

Given two sets consisting of agents and tasks, respectively,

the linear assignment problem searches for a one-to-one

matching between the agents and the tasks so that the total

assignment benefit is maximized. In this paper, we investigate

the linear assignment problem in the context of networked

systems, where computation and memory resources are dis-

tributed among a set of agents with limited communication

capabilities seeking an assignment with a desired set of tasks.

The linear assignment problem is fundamental in combina-

torial optimization due to its underlying linear programming

structure. It can be shown that the well known class of

linear network flow problems can be reduced to the linear

assignment problem by an appropriate transformation [1].

Moreover, the linear assignment problem often appears as a

subproblem in more complex problems such as the travel-

ing salesman problem [2]. Besides, however, its theoretical

significance, equally important is its wide applicability in

research areas ranging from facility allocation to distributed

robotics. In distributed robotics, in particular, the linear

assignment problem has recently received considerable at-

tention due to applications involving task or target allocation

[3]–[6] and formation stabilization [7]–[16].

Michael M. Zavlanos, Leonid Spesivtsev and George J. Pappas
are with GRASP Laboratory, School of Engineering and Applied
Science, University of Pennsylvania, Philadelphia, PA 19104, USA
{zavlanos,spesiv,pappasg}@grasp.upenn.edu

Due to its theoretical and practical significance, various

techniques have been proposed for obtaining an optimal

solution. Most rely on iterative improvement of some cost

function [17]–[20], while Kuhn’s Hungarian algorithm [21]

was the first method specifically designed for that problem.

All above techniques require a single central processor that

handles all computation and information in the system. The

need, however, for more efficient and reliable algorithms, has

recently lead to decentralized approaches, where computation

and ideally also information is distributed among multiple

parallel processing units. One such approach is the auction

algorithm proposed in [22], [23] that based on an appropriate

choice of bids, determines the prices of the tasks and

renders them more or less attractive for the agents to bid

for. Although, the assignment benefit does not necessarily

increase monotonically, it can be shown that eventually an

optimal assignment is discovered.

Despite the fact that computation in the auction algorithm

[23] is distributed over multiple agents, a shared memory

repository containing the task prices, where all agents have

access, is required. This practically leads to a complete

communication topology. In the case of networked sys-

tems, however, consisting of possibly mobile agents with

power constraints and limited communication capabilities,

the underlying network topologies are in principle dynamic

and not complete. Hence, we need to extend the parallel

auction algorithm proposed in [23], to the case where only

local communication between adjacent agents is available.

As in [23], the assignment process relies on an appropriate

selection of bids that determine the task prices, however, in

the current framework every agent locally stores, possibly

outdated, estimates of the task prices, which it updates

using nearest neighbor agreement protocols. We show that

the network topology may affect the algorithm performance

which, however, is guaranteed to converge to an assignment

with total assignment benefit within a linear approximation

of the optimal one. We also argue that in mobile robotics

applications, where neither shared memory nor central com-

putation is available, our approach is more natural.

The rest of this paper is organized as follows. In Section

II we define the linear assignment problem in the context

of networked systems, while in Section III we propose a

distributed auction algorithm for the assignment problem and

discuss its convergence and complexity properties. Finally, in

Section IV, we illustrate our approach for different network

topologies and discuss the resulting performance.

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuB17.5

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 1212

Shared Memory

Networked System

Fig. 1. Shared memory (left) versus networked (right) systems. Both
systems consist of parallel independent processing units (agents) resulting
in asynchronous decentralized computation. Information, however, in shared
memory systems is global due to a central memory repository contain-
ing the system’s global variables where all agents have read and write
access, whereas in networked systems is local due to the agents’ local
memory (where local variables are stored) and their limited communication
capabilities that allow information exchange with nearest neighbors only.
Furthermore, shared memory systems are typically associated with static
communication topologies, while communication topologies in the case of
networked systems can, in general, be dynamic.

II. PROBLEM FORMULATION

Consider a network of n agents with integrated wireless

communication capabilities and denote by (i, j) a com-

munication link between agents i and j. We assume that

communication links between the agents can be enabled and

disabled in time, due to either agent mobility, or power

constraints. Such networks give rise to the notion of a

dynamic graph G(t) = (V, E(t)), where V = {1, . . . , n}
consists the set of vertices indexed by the set of agents and

E(t) = {(i, j) | i, j ∈ V} denotes a time varying set of links.

We assume bidirectional communication links among the

agents and so (i, j) ∈ E(t) if and only if (j, i) ∈ E(t). Such

graphs are called undirected and consist the main focus of

this paper. Any vertices i and j of an undirected graph G(t)
that are joined by a link (i, j) ∈ E(t), are called adjacent or

neighbors at time t. Hence, we can define the set of neighbors

of agent i at time t, by Ni(t) = {j ∈ V | (i, j) ∈ E(t)}.

A topological invariant of graphs that is of great importance

for the purposes of this work is graph connectivity.

Definition 2.1 (Graph Connectivity): We say that a dy-

namic graph G(t) is connected at time t if there exists a

path, i.e., a sequence of distinct vertices such that consecutive

vertices are adjacent, between any two vertices in G(t).
Given the dynamic network G(t) consisting of n agents

described above, let m ≥ n denote a number of tasks

that need to be accomplished by the agents and define

the injective map α : {1, . . . , n} → {1, . . . ,m} such that

α(i) = j if and only if task j has been assigned to agent i.
Denote, further, by βij ∈ R the benefit of assigning task j
to agent i. This can be a function of the distance that agent

i needs to travel in order to acquire task j, the power that is

required to fulfill task j, or even the time required to fulfill

that task. Then, the objective investigated in this paper can

be stated as follows.

Problem 1 (Distributed Assignment): Given a connected

in time dynamic network G(t) consisting of n agents, m ≥ n
tasks and a set of nm benefits βij associated with assigning

agent i to task j, determine distributed control laws that

assign distinct agents to distinct tasks, such that the total

assignment benefit
∑n

i=1 βiα(i) is maximized.

Since, the assignment of the agents to tasks is not provided

a priori, it needs to be determined dynamically. We achieve

this goal by defining a distributed market where the agents

are able to bid for the task to which they wish to be

assigned. Unlike prior work that assumes either a single

central auctioneer [22] or multiple parallel processing units

(corresponding to the agents) composed in an asynchronous

shared memory system with global information [23], we

propose a distributed control framework, where every agent

independently and using only local information, is able to

determine a task to be assigned to (Fig. 1). The desired

assignment relies on an appropriate selection of bids that

determine the prices of the tasks and render them more or

less attractive for the agents to bid for. Accurate pricing in-

formation, necessary for correct bidding, can be obtained in a

multi-hop fashion by means of local communication between

adjacent agents. Our approach is described in Section III and

consists an extension to the parallel auction algorithm [23],

proposed by Bertsekas et al, to the case where only local

information is available.

III. DISTRIBUTED AUCTION ALGORITHM

As in [22], let every task j have a price pj(t) ≥ 0 at

time t, which every agent i that gets assigned to it has to

pay. Then, the net value of task j for agent i is βij − pj(t)
and every agent i would like to be assigned to a task j that

provides it with a maximum net value

βij − pj(t) = max
1≤k≤m

{βik − pk(t)}. (1)

If (1) is satisfied for all agents i we say that the assign-

ment and the set of prices are at equilibrium. Equilibrium

assignments are fundamental in the study of the assignment

problem since, they correspond to maximum total benefit,

while the corresponding sets of prices solve the associated

dual optimization problem [24].

As shown in [22], designing a market that guarantees an

equilibrium assignment is not straightforward, due to the

possibility of cycles in the algorithm, resulting from several

agents requesting to be assigned to a smaller number of

equally desirable tasks without, however, raising their prices.

For this, we employ the notion of an almost equilibrium

assignment and set of prices, introduced in [22]. This notion

of an equilibrium is motivated by real auctions, where

every bid for a task must raise its price by a minimum

positive increment and the agents must take risks to win their

preferred tasks. In particular, we define an almost equilibrium

assignment and set of prices at time t when the net value for

every agent i assigned to task j is within a constant ǫ > 0
of being maximal, i.e., when

βij − pj(t) ≥ max
1≤k≤m

{βik − pk(t)} − ǫ (2)

for all agents i. Condition (2) in the context of the auction

algorithm [22] is known as ǫ-complementary slackness and

for ǫ = 0 reduces to the ordinary complementary slackness

condition (1).

The rest of this section is devoted in describing a dis-

tributed auction algorithm over a dynamic network of agents

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB17.5

1213

Algorithm 1 Auction Iteration for Agent i

Require: An assignment αi(t) ∈ {1, . . . ,m} and a set of

prices pij(t) ≥ 0 and highest bidders bij(t) ∈ N for all

tasks 1 ≤ j ≤ m;

1: Update the prices of all tasks and the corresponding

highest bidders by

pij(t + 1) := maxk∈Ni(t){pij(t), pkj(t)} and

bij(t + 1) := maxk∈argmaxz∈Ni(t){pij(t),pzj(t)}{bkj(t)};

2: if piαi(t)(t) ≤ piαi(t)(t+1) and biαi(t)(t+1) 6= i then

3: Update the assignment by

αi(t + 1) ∈ argmax1≤k≤m{βik − pik(t + 1)};

4: Set biαi(t+1)(t + 1) := i and increase the price for

task αi(t+1) by piαi(t+1)(t+1) := piαi(t+1)(t)+γi,

where γi ≥ ǫ is according to equations (3)-(5);

5: else

6: Remain assigned to task αi(t), i.e., αi(t+1) := αi(t);
7: end if

and showing that it always converges to an almost equilib-

rium assignment. In particular, let G(t) denote a dynamic

network consisting of n agents and let αi(t) ∈ {1, . . . ,m}
denote the assignment status of agent i at time t, such that

αi(t) = j if agent i is assigned to task j. Let further

pij(t) ≥ 0 denote the price that agent i needs to pay in

order to be assigned to task j at time t and bij(t) ∈ N

denote the largest-index bidder among the possibly multiple

(due to ties) highest bidders for task j at time t.1

Given the above notation, a single iteration of the dis-

tributed auction algorithm for agent i is described in Algo-

rithm 1. In particular, given a set of prices {pij(t)}
m
j=1 at time

t, an assignment αi(t) that currently provides agent i with the

best net value, i.e., αi(t) ∈ argmax1≤k≤m{βik−pik(t)}, and

a set of highest bidders with the largest index {bij(t)}
m
j=1,

such that biαi(t)(t) = i, agent i updates the prices and

highest bidders for all tasks j using local maximum-price

and maximum-index update protocols, respectively (line 1,

Alg. 1). Such updates guarantee that, for any sequence G(t)
of connected networks, every agent will eventually receive

the up-to-date maximum price

pj(t) , max
1≤k≤n

{pkj(t)}

of all tasks j as well as the corresponding highest bidders

with the largest index. In other words, although time delays

in the network due to multi-hop information propagation

may result in non-adjacent agents using outdated task prices

and bidding lower for expensive tasks, eventually up-to-date

information is received resulting in accurate bidding (Fig. 2).

The second and final step of an iteration of Algorithm 1

consists of checking whether the price piαi(t)(t) of the

current assignment αi(t) of agent i has been increased by

1Unlike shared memory systems where the global task prices pj(t) are
stored in a common memory repository to which all agents have access [23],
in the proposed networked system every agent i has local copies of the task
prices pij(t) which it updates using information from its neighbors (Fig. 1).
This lack of global information, may result in ties in the bids, for which a
tie breaking mechanism, captured by bij(t), needs to be introduced.

t0

piσ

pjσ

t1 t2 t3 t4 t5 t6

pkσ

i

j

k pkσ

pkσ

pkσ

ǫ ǫ

ǫ

ǫ

ǫ

piσ

ǫ

piσ

ǫ

pσ

pjσ

Fig. 2. Propagation of pricing information in a network of six agents.
Agents i, j and k desire to be assigned to task σ and bid for this task at
time instants t0 through t6 corresponding to consecutive communication
cycles. Assume that task σ is initially attractive for agents i and j and
it remains attractive for both at time t1 after they have exchanged prices
piσ(t0) and pjσ(t0), respectively. During the next communication cycle
(time t2), agent i receives pjσ(t1) from agent j and bids higher for task σ,
which is no longer attractive for agent j. At time t3 agent k is not yet aware
of the pricing sequence piσ(t0), piσ(t1) and piσ(t2) and initializes a low
bid for task σ. However, during subsequent time instants t4, t5 and t6, agent
k receives prices piσ(t0), piσ(t1) or piσ(t2), respectively, and increases its
bid for task σ. Note that lack of global pricing information results in agent
k initially placing unreasonably low bids. However, eventually a correct bid
will be placed due to the connected network structure.

other agents in the network or whether a larger-indexed agent

has placed an equal bid, in which case there is a tie for task

αi(t) (line 2, Alg. 1).2 If any of the previous statements is

true, assignment αi(t) may no longer be at equilibrium and

agent i needs to select a new assignment αi(t + 1) using

the updated prices (line 3, Alg. 1) and increase the price

piαi(t+1) of this task by

γi , vi − wi + ǫ, (3)

where

vi , max
1≤j≤m

{βij − pij(t)} (4)

corresponds to the best net value available to agent i,

wi , max
j 6=αi(t+1)

{βij − pij(t)} (5)

corresponds to the second best net value available to agent

i and ǫ > 0 indicates a minimum bid increment (line 4,

Alg. 1). Clearly,

max
1≤j≤m

{βij − pij(t + 1)}− ǫ ≤ βiαi(t+1) − piαi(t+1)(t + 1),

which implies that the new assignment and set of prices are

almost at equilibrium, with respect to the partial knowledge

of prices that agent i has. Note that, with respect to this

partial knowledge of prices, piαi(t+1)(t + 1) is now the

highest price for task αi(t+1) and so agent i can also update

biαi(t+1)(t + 1), accordingly (line 4, Alg. 1). Note, finally,

that Algorithm 1 does not require any particular initialization

of the prices pij(0). In other words, the necessary almost at

2Note that if piαi(t)
(t) < piαi(t)

(t+1) then clearly biαi(t)
(t+1) 6= i.

Hence, the condition biαi(t)
(t+1) 6= i only affects ties on the prices, where

it acts as a tie breaker due to the maximum-index update rule (line 1, Alg. 1).
Clearly, the largest-index agent wins all ties.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB17.5

1214

equilibrium initial assignment αi(0) and corresponding set of

highest bidders bij(0), with biαi(0)(0) = i, can be generated

using any set of initial prices.

Hence, we can define the distributed auction algorithm

for the assignment problem by the integration of n copies of

Algorithm 1 run by each one of the agents in the network.

The following result shows that the proposed algorithm

always terminates with a correct assignment.

Proposition 3.1: Given a connected in time dynamic net-

work G(t) consisting of n agents and a set of m ≥ n
tasks, the distributed auction algorithm terminates in a finite

number of iterations with an assignment and a set of prices

that are almost at equilibrium.

Proof: Note first that, due to the networked structure of

the system which imposes multi-hop communication patterns

among the agents, for every task and every time instant

there exist agents that are not yet informed of its actual

price and others that are (Fig. 2). We call these agents

uninformed and informed, respectively, and note that due to

the maximum-price update rule and the connected structure

of the network, every uninformed agent becomes informed

in a finite number of communication cycles that depends

on its distance (in number of links) to the closest informed

agent.3 This implies that uninformed agents may be placing

low bids for expensive tasks, however, eventually they will

become informed and bid correctly for an attractive task.

With this observation, we can disregard all bids made by

uninformed agents (which are finite due to the finite number

of communication cycles until an agent becomes informed)

and only consider bids by informed agents that increase the

actual price of every task. Hence, we only need to show that

every task can only receive a finite number of such bids.

Our argument is along the lines of [22]: Observe that

every informed agent that is assigned to a task that has

already received a bid, attains the maximum possible net

value from this assignment. The reason for this is that the

maximum net value is attained by any informed agent just

after acquiring the task and remains maximum for as long

as the agent remains informed and holds the task (since

the other task prices can not decrease in the course of the

algorithm). Note also that whenever m bids are placed for

a task by any number of informed agents, its price must

increase by at least mǫ. Thus, for sufficiently large m, the

task will become expensive enough to be considered as less

attractive compared to other tasks that have not yet received

any bids. It follows that there is a limited number of bids

that any task can receive by informed agents, while there still

exist tasks that have not yet received any bids. Therefore, the

auction will continue until all tasks have received at least

one bid by an informed agent (at which point all agents are

informed) and will terminate with all agents obtaining their

maximum possible net value.

Observe that Theorem 3.3 also provides a termination

condition for the distributed auction algorithm, namely that

3Note that the number of communication cycles is finite since, as it will
be shown next, there can not exist informed agents that continuously bid
for the same task.

every task should have received at least one bid. This condi-

tion clearly holds when the task prices stop changing and in

order to account for the multi-hop information propagation

in the network, we may define termination of the algorithm

as the time instant when the task prices for all agents remain

unchanged for at least ∆ communication rounds, where

∆ ≤ n − 1 indicates the maximum network diameter, i.e.,

the maximum length path between any two agents in the

network. The following result provides an upper bound on

the number of iterations of the distributed auction algorithm.

Proposition 3.2: The distributed auction algorithm termi-

nates in O
(

∆n2⌈maxi,j{βij}−mini,j{βij}
ǫ

⌉
)

iterations.

Proof: In order to maximize the total number of

iterations of the algorithm, we construct a worst case scenario

where all agents persistently place minimum bid increments

of size ǫ > 0 on every single task (until it is no longer

attractive), delaying thus the assignment process. To achieve

this goal, let δ > 0 and Mj > 0, j = 1, . . . ,m, such that

the benefits βij are distributed according to

max
1≤i≤n

{βij} − min
1≤i≤n

{βij} < δ

min
1≤i≤n

{βij} − max
1≤i≤n

{βi(j−1)} = Mj
,

for all j = 1 . . . ,m. Then, task n is initially the most

attractive for all agents and for sufficiently small δ > 0 it

will remain so until its price is increased by at least Mn.

This requires at least ⌈Mn

ǫ
⌉ bids on that task by every agent

and results in a total of n⌈Mn

ǫ
⌉ iterations of the algorithm.

Once the price of task n has been increased by at least

Mn, task n − 1 becomes also attractive and starts receiving

bids by the agents. Clearly, tasks n and n − 1 remain the

only attractive tasks for at least 2⌈Mn−1

ǫ
⌉ more iterations of

the algorithm by every one of the n agents, resulting in an

increase in their price by at least Mn−1 and a total number

of 2n⌈Mn−1

ǫ
⌉ iterations. Similarly, the next task to become

attractive and start receiving bids is task n−2 and as before,

tasks n, n−1 and n−2 remain the only attractive tasks for at

least 3n⌈Mn−2

ǫ
⌉ more iterations of the algorithm. Proceeding

in the same fashion and summing up the total numbers of

iterations for each stage of the assignment process, we get

n
n

∑

j=1

j
⌈Mn−j+1

ǫ

⌉

≤ n2
⌈maxi,j{βij} − mini,j{βij}

ǫ

⌉

.

Observe that this number of iterations needs to be aug-

mented by the number of communication rounds required

to propagate each bid in the network. In the worst case,

this requires ∆ communication rounds for every iteration

of the algorithm, which completes the proof. Note that,

the proposed scenario forces the agents to keep bidding on

specific tasks and hence, delays the assignment process and

maximizes the total number of iterations, as desired. Note

also, that for a complete network topology, ∆ = 1 and the

upper bound on the number of iterations of the distributed

auction algorithm reduces to the one obtained in [22].

The following result characterizes the total benefit

achieved by the distributed auction algorithm in terms of

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB17.5

1215

the optimal one. In particular, since the networked structure

of the system only affects the underlying information pattern

and not the nature of the assignment procedure, any results

on optimality of solutions obtained by the auction algorithm

[22] apply in the case of the distributed auction algorithm as

well. Hence, we have the following theorem.

Theorem 3.3 (Adopted from [22]): The final assignment

α : {1, . . . , n} → {1, . . . ,m} with α(i) , αi that is

obtained by the distributed auction algorithm is within nǫ
of maximizing the the total assignment benefit.

Proof: Let ǫ > 0 and note that the total benefit of any

assignment α ∈ {1, . . . ,m} satisfies

n
∑

i=1

βiα(i) ≤
m

∑

j=1

pj +
n

∑

i=1

max
1≤j≤m

{βij − pj},

for any set of prices {pj}m
j=1, since the second term on the

right-hand-side is no less than
∑n

i=1(βiα(i) − pα(i)), while

the first term is equal to
∑n

i=1 pα(i). Hence, A⋆ ≤ D⋆, where

A⋆ , max
α(i), i=1,...,n

n
∑

i=1

βiα(i)

is the optimal total assignment benefit and

D⋆ , min
pj , j=1,...,m

m
∑

j=1

pj +
n

∑

i=1

max
1≤j≤m

{βij − pj}.

Since the final assignment and set of prices obtained by

the distributed auction algorithm are almost at equilibrium,

we also have that βiα(i)−pα(i) ≥ max1≤j≤m{βij −pj}− ǫ,

which implies that

D⋆ ≤
n

∑

i=1

(

pα(i) + max
1≤j≤m

{βij − pj}
)

≤
n

∑

i=1

βiα(i) + nǫ ≤ A⋆ + nǫ.

Since A⋆ ≤ D⋆, it follows that the total assignment benefit
∑n

i=1 βiα(i) is within nǫ of the optimal value A⋆.

Theorem 3.3 shows that for sufficiently small ǫ, the final

assignment is almost optimal. In particular, if all benefits βij

are integers, the total benefit
∑n

i=1 βiα(i) for any assignment

α is also integer. Hence, if nǫ < 1, an assignment that is

within nǫ of being optimal, must be optimal. We conclude

that if ǫ < 1/n and all benefits are integers, the final

assignment obtained by the distributed auction algorithm

is optimal. This is a straightforward extension of a similar

observation made in [22].

IV. ALGORITHM PERFORMANCE & THE EFFECT

OF THE NETWORK TOPOLOGY

In this section we illustrate the proposed distributed auc-

tion algorithm for different values of the parameter ǫ > 0
and different, but fixed, network topologies G(t) = G. In

particular, for different problem sizes n and same number of

tasks (m = n), we randomly generated benefits βij from

a uniform distribution on the unit interval and compared

the running time and final assignment benefit
∑n

i=1 βiα(i)

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

ε =0.1→

ε =0.01→

ε =0.001→

Hungarian alg.

Auction alg.

(a) Time (sec) vs. problem size
n for different values of the
parameter ǫ = .1, .01, .001.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε =0.01→

nε =0.9→

Threshold nε

Total Benefit Difference

(b) Difference in final assign-
ment benefit (Hungarian minus
Auction) vs. problem size n for
parameter ǫ = .01.

Fig. 3. Comparison of the performance of the distributed auction algorithm
and the Hungarian algorithm for different problem sizes n and a complete
network topology. Observe that small values of ǫ result in slow convergence
of the auction algorithm, while for large ǫ the auction algorithm becomes
faster that the Hungarian. Note also that the final assignment benefit obtained
by the auction algorithm is within nǫ of the optimal one (Theorem 3.3).

obtained by the distributed auction algorithm with the opti-

mal one
∑n

i=1 βiα⋆(i) obtained by the Hungarian algorithm

[21]. The communication topologies considered were the

minimally connected line topology, where every agent is

connected to at most two other agents (Fig. 2), the complete

topology, where every agent is connected to all other agents

in the network, and a random topology, where every agent

is connected to 50% of the other agents so that the resulting

network is connected. All algorithms were implemented

in MATLAB and run on an Intel Core 2 Duo 2.40 GHz

processor with 4 GB RAM.

Fig. 3 compares the performance of the distributed auction

algorithm with the Hungarian algorithm for different problem

sizes n, parameters ǫ and the complete network topology.

Observe that the larger ǫ is, the faster the distributed auction

algorithm becomes (Fig. 3(a)). In particular, for sufficiently

large values of ǫ, the auction algorithm becomes significantly

faster than the Hungarian algorithm. This is a reasonable

observation given the upper bound on the running time of

the algorithm obtained in Proposition 3.2. Although large

values of ǫ result in faster convergence, they may also result

in worse performance with respect to the final assignment

benefit
∑n

i=1 βiα(i). Theorem 3.3, however, guarantees that

this final assignment benefit is always within nǫ of the

optimal one. This is illustrated in Fig. 3(b), where the

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

Line →

Complete →

Random →

Hungarian alg.

Auction alg.

Fig. 4. Time (sec) vs. problem size n for different network topologies
and ǫ = .01. Note the slow convergence of the line topology due to the
corresponding maximum network diameter n−1 that dominates complexity.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB17.5

1216

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Line →

Complete →

Random →

Auction alg.

(a) Difference in final assign-
ment benefit (Hungarian minus
Auction) vs. problem size n for
parameter ǫ = .1.

10 20 30 40 50 60 70 80 90 100
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Line →

Complete →

Random →

Auction alg.

(b) Difference in final assign-
ment benefit (Hungarian minus
Auction) vs. problem size n for
parameter ǫ = .001.

Fig. 5. Comparison of the performance of the distributed auction algorithm
for different network topologies and parameters ǫ. Observe that the final
assignment depends on the topology of the network, however, for suffi-
ciently small ǫ, the auction algorithm returns an almost optimal solution
(Theorem 3.3) and this effect disappears.

difference in the final assignment benefit
∑n

i=1 βiα⋆(i) −
∑n

i=1 βiα(i) obtained by the Hungarian algorithm and the

auction algorithm, respectively, is plotted as a function of

the problem size n for ǫ = .01.

The effect of the network topology on the performance

of the auction algorithm is considered in Figs. 4 and 5. In

particular, Fig. 4 shows how the network topology affects

the running time of the auction algorithm. Observe that

sparse topologies (line topology) are the slowest ones to

converge, as expected by complexity bounds obtained by

Proposition 3.2. On the other hand, the final assignments

obtained for the same problem on different communication

topologies are not necessarily the same (Fig. 5). This is

a reasonable observation given the fact that the network

topology affects the order in which the agents bid for

attractive tasks and for large bid increments, this order may

render tasks unattractive (Fig. 5(a)). Note, however, that the

smaller ǫ becomes, the smaller the bid increments are and the

less the network topology affects the assignment (Fig. 5(b)).

V. CONCLUSIONS

In this paper, we considered the linear assignment problem

in the context of networked systems, where the main chal-

lenge was dealing with the lack of global information due

to the limited communication capabilities of the agents. We

addressed this challenge by means of a distributed auction

algorithm, where every agent was able to bid for any desired

task. The final assignment was obtained through an appropri-

ate choice of bids that determined the prices of the tasks and

rendered them more or less attractive for the agents to bid for.

Our algorithm consisted an extension to the parallel auction

algorithm proposed by Bertsekas et al, to the case where no

shared memory is available and the agents are required to

store locally all pricing information and update it in a multi-

hop fashion using nearest neighbor agreement protocols.

We showed that our algorithm converges to an assignment

that maximizes the total assignment benefit within a linear

approximation of the optimal one and discussed the effect of

the underlying network topology on its performance.

REFERENCES

[1] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization:

Algorithms and Complexity, Prentice Hall, Englewood Cliffs, NJ,
1982.

[2] M. Held and R. M. Karp. The Traveling Salesman Problem and

Minimal Spanning Trees, Journal on Operations Research, vol. 18,
pp. 1138-1162, 1970.

[3] M. M. Zavlanos and G. J. Pappas. Dynamic Assignment in Distributed

Motion Planning with Local Coordination, IEEE Transactions on
Robotics, vol. 24, no. 1, pp. 232-242, Feb. 2008.

[4] S. Kloder and S. Hutchinson. Path Planning for Permutation-Invariant

Multirobot Formations, IEEE Transactions on Robotics, vol. 22, no.
4, pp. 650-665, Aug. 2006.

[5] M. Ji, S. Azuma, and M. Egerstedt. Role-Assignment in Multi-

Agent Coordination, International Journal of Assistive Robotics and
Mechatronics, vol. 7, no. 1, pp. 32-40, March 2006.

[6] S. L. Smith and F. Bullo. Target Assignment for Robotic Networks:

Worst Case and Stochastic Performance in Dense Environments, In
Proceedings of the 46th IEEE Conference on Decision and Control,
New Orleans, LA, Dec. 2007, pp. 3585-3590.

[7] M. M. Zavlanos and G. J. Pappas. Distributed Formation Control with

Permutation Symmetries, In Proceedings of the 46th IEEE Conference
on Decision and Control, New Orleans, LA, Dec. 2007, pp. 2894-2899.

[8] N. Michael, M. M. Zavlanos, V. Kumar and G. J. Pappas. Distributed

Multi-Robot Task Assignment and Formation Control, IEEE Interna-
tional Conference on Robotics and Automation, Pasadena, CA, May
2008. (to appear)

[9] H. G. Tanner, A. Jadbabaie and G. J. Pappas. Flocking in Fixed and

Switching Networks, IEEE Transactions on Automatic Control, vol.
52, no. 5, pp. 863-868, May 2007.

[10] R. Olfati-Saber and R. M. Murray. Consensus Problems in Networks of

Agents with Switching Topology and Time-Delays, IEEE Transactions
on Automatic Control, vol. 49, no. 9, pp. 1520-1533, Sept. 2004.

[11] J. Cortes, S. Martinez and F. Bullo. Robust Rendezvous for Mobile

Autonomous Agents via Proximity Graphs in Arbitrary Dimensions,
IEEE Transactions on Automatic Control, vol. 51, no. 8, pp. 1289-
1298, Aug. 2006.

[12] D. V. Dimarogonas, S. G. Loizou, K. J. Kyriakopoulos and M. M.
Zavlanos. A Feedback Stabilization and Collision Avoidance Scheme

for Multiple Independent Non-point Agents, Automatica, vol. 42, no.
2, pp. 229-243, Feb. 2006.

[13] R. Sepulchre, D. Paley, N. E. Leonard. Stabilization of Planar

Collective Motion: All-to-All Communication, IEEE Transactions on
Automatic Control, vol. 52, no. 5, pp. 811-824, May 2007.

[14] W. Ren and R. Beard. Consensus Seeking in Multi-Agent Systems un-

der Dynamically Changing Interaction Topologies, IEEE Transactions
on Automatic Control, vol. 50, no. 5, pp. 655-661, May 2005.

[15] T. Balch and R.C. Arkin. Behavior-based Formation Control for

Multirobot Teams, IEEE Transactions on Robotics and Automation,
vol. 14, no. 6, pp. 926-939, Dec. 1998.

[16] S. Poduri and G. S. Sukhatme. Constrained Coverage for Mobile

Sensor Networks, In Proceedings of the IEEE International Conference
on Robotics and Automation, New Orleans, LA, May 2004, pp. 165-
172.

[17] M. L. Balinski. Signature Methods for the Assignment Problem,
Journal on Operations Research, vol. 33, pp. 527-537, 1985.

[18] D. P. Bertsekas. A New Algorithm for the Assignment Problem,
Mathematical Programming, vol. 21, pp. 152-171, 1981.

[19] U. Derigs. The Shortest Augmenting Path Method for Solving Assign-

ment Problems - Motivation and Computational Experience, Annals
of Operations Research, vol. 4, pp. 57-102, 1985.

[20] M. Hung. A Polynomial Simplex Method for the Assignment Problem,
Operations Reserach, vol. 31, pp. 595-600, 1983.

[21] H. W. Kuhn. The Hungarian Method for the Assignment Problem,
Naval Research Logistics, vol. 2, no. 1-2, pp. 83-97, March 1955.

[22] D. P. Bertsekas. Auction Algorithms for Network Flow Problems: A

Tutorial Introduction, Computational Optimization and Applications,
vol. 1, pp. 7-66, 1992.

[23] D. P. Bertsekas and D. A. Castanon. Parallel Synchronous and

Asynchronous Implementations of the Auction Algorithm, Parallel
Computing, vol. 17, pp. 707-732, 1991.

[24] G. B. Dantzig. Linear Programming and Extenssions, Princeton Uni-
versity Press, Princeton, NJ, 1963.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB17.5

1217

