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Abstract— The lactose regulation system of Escherichia coli
is known to exhibit a bistable behavior. The stable states
correspond to the phenotypical states of the system, induced
and uninduced. Stochastic modeling of the system enables
us to reproduce an experimentally observed phenomenon of
spontaneous transitions between the induced and uninduced
states. The average behavior of a colony of a large number of
cells can be accurately described by an abstract model of the
system, which is a two state Markov chain.

In this paper, we consider a control problem that involves
regulating the fraction of induction of a colony of Escherichia
coli. We use the abstract model to design a feedback controller
based on model predictive control strategy. Upon simulation,
we show that the model predictive control is superior to other
control strategies that we have designed before, in terms of less
fluctuation in the control input and less tracking error.

I. INTRODUCTION

The advance of genetic sensing and manipulation technol-

ogy has caused the field of biology to undergo a significant

shift in its paradigms. The possibility of manipulating ge-

netic information in living cells has arguably transformed

molecular biology and genetics from a largely analytical

science into a synthetic science. The possibility of acquiring

a vast amount of data (for example, with the availability

of genetic microarrays) has helped scientists identify very

complex biochemical and genetic networks.

In molecular biology, there are a few organisms that have

been designated as model systems [1]. Similarity in the

basic principles among many organisms leads biologists to

concentrate on several model systems that facilitate easy

comparison and sharing of research results. The bacteria

Escherichia coli are one of the model systems.

The lactose regulation system in E. coli [2] is one of the

most extensively studied examples of positive feedback in a

naturally occurring genetic network. The lac operon, which

encodes the lactose control system, is often used as a switch

to control genes in genetically engineered systems [3], [4].

As illustrated in the upper panel of Figure 1, two of its

three component genes encode enzymes (β-galactosidase and

permease) which contribute to lactose uptake respectively to

the synthesis of allolactose. In turn, allolactose acts as an

inducer for the operon itself.
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Fig. 1. The lactose network (top) and its modification with the gratuitous
inducer TMG (bottom)

The available experimental results, including those used

to validate the Yildirim-Mackey model [5], refer to “gra-

tuitous” induction by substances similar to lactose such as

thio-methyl galactosidase (TMG). Such gratuitous inducers,

which are not metabolized by the cell, are often preferred in

experimental settings because their presence does not affect

the growth rate. From the systems perspective, using TMG

instead of lactose also breaks one of the feedback loops in the

Yildirim-Mackey model, since β-galactosidase does not act

on TMG, and TMG itself can play the inducer role played by

allolactose in the full Yildirim-Mackey model, as illustrated

in the lower panel of Figure 1.

Multistability is a well known feature of positive autoregu-

lation in genetic networks [6]. The lactose regulation system

of E. coli is known to be bistable [5]. The two stable states of

the dynamics are modulated by the concentration of inducer

in the environment. Bistability of genetic regulation networks

has been exploited in synthetic systems biology, for example

in the celebrated design of genetic toggle switch [3].

Feedback control of biological systems is a very active

field. In personalized medicine, feedback control is used to

influence cellular processes. The need for treatment proce-

dures that are widely applicable and give satisfactory clinical

results for a variety of individuals with different steady

state and dynamic responses requires the use of feedback

mechanisms [7]. For every treatment policy there is an

inevitable tradeoff between drugs efficacy, organ health and

use of therapeutics. This makes optimal control solutions

attractive. Souza et al [8] and Kirschner et al [9] offer an

optimal control approach to HIV treatment. Jung et al [10]

apply optimal control theory to the treatments in a two-

strain tuberculosis model. Stengel et al [11] demonstrated

optimal control solutions to the innate immune response.

Another control method, model-based predictive control, is
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also advantageous if accurate models are used in controller

synthesis. This is so because predictive control provides us

an estimate of future behavior. For instance, Parker et al [12]

made a review of control algorithms for noninvasive moni-

toring and regulation in type I diabetic patients and showed

that model-based predictive control is an attractive choice

for blood glucose concentration regulation. There is a recent

attempt to apply external control to neuropharmacology [13].

Finally, we also find applications of control laws to build

effective strategies in gene therapies and tissue engineering

[14].

In this paper, we study the problem of controlling a colony

of E. coli by means of global sensing and actuation [15],

[16]. In this problem, we assume that we do not have access

to the state of individual cells. Rather, we assume that by

sensing we can only measure an averaged quantity across the

population. Global actuation means we can only manipulate

the environment of the whole colony without being able to

manipulate the bacteria individually. The control method that

we use is hybrid model predictive control [17] based on a

piecewise affine model of the colony dynamics. Similar con-

trol algorithms have been applied in several other application

domains, for example in automotive control systems [18],

and related theoretical aspects of stability have been recently

studied in [19].

Model predictive control has characteristics that make it

an attractive choice for biomedical systems. This is because

the controller architecture is particularly well suited to the

multivariable nature of these systems, as well as the inherent

constraints involved in the related control problems [20].

II. MATHEMATICAL MODEL OF THE LACTOSE

REGULATION SYSTEM OF E. COLI

A. ODE model

Yildirim and Mackey [5] proposed a biochemically
founded ordinary differential model of the lactose-induced
network shown in the upper panel of Figure 1. In our earlier
work [15], [16], we adopted the structure of this model and
applied it to the TMG-induced network (lower panel of the
same figure). The equations of motion for induction by TMG
(T ) are:

dM

dt
= αM

1 + K1(e
−µτM T (t − τM ))n

K + K1(e−µτM T (t − τM ))n
+ Γ0 − γ̃MM, (1a)

dB

dt
= αBe

−µτB M(t − τB) − γ̃BB, (1b)

dT

dt
= αLP

Te

KTe
+ Te

− βLP
T

KL1
+ T

− γ̃LT, (1c)

dP

dt
= αP e

−µ(τP +τB)
M(t − τP − τB) − γ̃P P. (1d)

The variables M , P , and B signify the concentrations of

mRNA, permease, and β-galactosidase in the cell. We take

into account time delays due to transcription and translation.

Variables without an argument are taken at time t, time

delays are indicated by an explicit argument, e.g., M(t−τB)
is the value of the variable M delayed with τB .

The symbol Te in equation (1c) signifies the external TMG

concentration. If the system is to be viewed as an input-state

system, then Te can be thought of as an input to the system,

while the other four concentrations are the state variables.
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Fig. 2. The equilibria of the system given by (1). The middle range of Te

has three branches of equilibria.

The other symbols in the equation are constant parameters,

given by the Table I, together with the following relations

TABLE I

SYSTEM PARAMETERS

Value Unit Value Unit

µ 2.26 · 10−2 min−1 KTe
6.5·10−4 mM

γM 0.411 min−1 γB 8.33 · 10−4 min−1

γA 0.52 min−1 Γ0 1.0 · 10−6 mM/min

K 7200 αM 9.97 · 10−4 mM/min

τB 2.0 min K1 6.3 · 105 (mM)−2

KL1
0.36 mM αB 1.66 · 10−2 min−1

τP 0.83 min βL 546.32 min−1

τM 0.1 min αP 10.0 min−1

γL 1.52 min−1 γP 0.6274 min−1

αL 81 min−1 n 2

γ̃M = γM + µ, γ̃B = γB + µ, (2)

γ̃A = γA + µ, γ̃P = γP + µ. , (3)

where µ is the growth rate. The values of the constants

are based on those in [21] but have been modified to give

consistent behavior to the TMG model in the limit of a large

but finite cell population.

When the value of Te is maintained between 1.4 - 32 µM,

the system has three equilibria. Two of these equilibria are

stable, giving rise to bistability of the system. Also, varying

the value of Te causes a hysteresis behavior. See Figure 2

for the illustration.

B. Stochastic hybrid model

The upper and lower stable branches of the equilibria

correspond to the so called induced and uninduced states

of the bacteria. Experimental results have shown that in a

colony of bacteria, both states coexist with possibly different

distributions. Also, the system can spontaneously switch

between the two states [22]. These results underline the

necessity of expressing stochasticity in the model, if we want

to capture these phenomena.
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Fig. 3. Two state continuous
time Markov chain model.
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Fig. 4. The relation between
the transition rates λ1 and λ2

of the Markov chain and Te.

In our earlier work, we expressed the stochasticity of the

system by constructing a stochastic hybrid system model of

the system [15], [16]. This stochastic hybrid model is based

on a modified Gillespie’s explicit τ -leaping algorithm [23].

In terms of stochastic differential equations, our hybrid

stochastic model can be written as follows.

dMt = dM̂t − dM̃t, (4a)

dBt = dB̂t − dB̃t, (4b)

dTt

dt
=

TeαLPt

KLe
+ Te

−
βLPtTt

KL1
+ Tt

− γ̃LTt, (4c)

dPt

dt
= αP e−µ(τP +τB) M(t−τP −τB)

CN

− γ̃P Pt. (4d)

Here the processes M̂t and M̃t are the Poisson processes

that are responsible for the creation and breaking up of the

messenger RNA molecules, respectively. Similarly, B̂t and

B̃t are the Poisson processes that are responsible for the

creation and breaking up of the β - galactosidase molecules,

respectively. The rates of these processes are state dependent,

and are given as follows.

λM̂ (t) = CN

[

αM

1 + K1(e
−µτM T(t−τM ))

n

K + K1(e−µτM T(t−τM ))n
+ Γ0

]

, (5a)

λM̃ (t) = γ̃MMt, (5b)

λB̂(t) = αBe−µτBM(t−τB), (5c)

λB̃(t) = γ̃BBt, (5d)

where the conversion constant CN = 6.023 · 104 molecules
mM .

C. Two state Markov chain model

In our earlier work [15], [16], we also proposed an

abstraction for the stochastic hybrid model described in the

previous subsection. The fact that the cells can spontaneously

switch between the two phenotypical states (induced and

uninduced) is captured by modeling the system as a two-state

continuous time Markov chain, whose states are induced

and uninduced (see Figure 3). The transition rates between

the two states are assumed to be functions of the external

TMG concentration (Te) (see Figure 4).

Given the continuous time Markov chain model as in

Figure 3, we can compute the probability distribution of the

states as follows. Define xlo(t) and xhi(t) as the probability

fraction

of

induction

CONTROLLER

ext.

TMG

reference input

u(t) y(t)

y (t)r

Fig. 5. The control block diagram.

of finding the system at time t in the low and high state re-

spectively. The probability distribution satisfies the following

differential equation.

d

dt

[

xlo

xhi

]

=

[

−λ1(Te) λ2(Te)
λ1(Te) −λ2(Te)

] [

xlo

xhi

]

. (6)

III. INDUCTION CONTROL OF A COLONY OF E. COLI

The architecture of the control system that we discuss in

this paper is illustrated in Figure 5. The plant to be controlled

in a large colony of E. coli bacteria. The controller affects

the plant by adjusting of the external concentration of TMG

in the environment. Feedback information is read from the

plant in the form of a global quantity, which we consider

as the output of the control system. By this, we mean the

controller does not have any information about the individual

cells in the colony. Rather, the controller relies on sensing a

global quantity, for example, the fraction of induced cells in

the population. The control goal is to make the output track

a given reference trajectory or attain a desired level.

Control actuation by means of adjusting the external

concentration of TMG in the environment can be realized

as follows. Increasing the concentration can be done, for

example by injecting the enzyme into the plant. There are

a number of limitations associated to this method. First,

the concentration cannot be made arbitrarily high since it

can only be as high as the concentration of the injected

enzyme. Second, the concentration cannot evolve arbitrarily

fast. Decreasing the external concentration can be done, for

example through dilution of the enzyme in the plant.

Sensing activity level of the colony can be done through

sensing of certain protein concentrations in the cells. A

certain protein called the gfp (green fluorescent protein) can

be encoded in the lac operon. When the genes in the operon

are expressed, gfp is also produced. Thus, the concentration

of gfp in the cell can be used as an indicator for the activity

of the cell. The protein gfp emits green light. Therefore we

can use the luminescence of the cells as a way to measure

its level of activity. This is actually a standard procedure in

synthetic biology [3], [24].

In [15], [16], we have proven that the design of a feedback

controller for such a control problem can be cast as the

following problem.
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Controller design: Given a plant model

d

dt

[

x1

x2

]

=

[

−λ1(u) λ2(u)
λ1(u) −λ2(u)

] [

x1

x2

]

, (7a)

y(t) = x2(t), (7b)

design a controller that reads the output y(t) and outputs the

control input u(t), such that the output of the system y(t)
tracks a given reference signal yr(t).

IV. HYBRID MODEL PREDICTIVE CONTROL SOLUTION

In this paper, we propose a model predictive control solu-

tion to the above mentioned control problem. The underlying

idea is to approximate the plant model (7) by a piecewise

linear model that is obtained by assuming that λ1(u) and

λ2(u) are piecewise constant functions

λi(u) = λ
j
i if uj−1 ≤ u < uj , j = 1, . . . , 6, i = 1, 2 (8)

where the intervals [uj−1, uj) and the corresponding values

of λ
j
i are given by Table II. The values of λ1 and λ2 in the

table are determined from the identified rates as in Figure 4.

TABLE II

TRANSITION RATES AS PIECEWISE CONSTANT FUNCTIONS OF u.

u[10−3mM] λ1(u)[min−1] λ2(u)[min−1]
[1.4, 1.5) 8.68 · 10−4 5.91 · 10−3

[1.5, 1.6) 9.27 · 10−4 3.61 · 10−3

[1.6, 1.7) 1.13 · 10−3 2.36 · 10−3

[1.7, 1.8) 1.39 · 10−3 1.54 · 10−3

[1.8, 1.9) 1.67 · 10−3 9.53 · 10−4

[1.9, 2.0) 1.93 · 10−3 5.54 · 10−4

The control input u(t) is assumed to be a piecewise

constant signal that changes value every interval of length

Ts. Thus, the idea is to compute and (if necessary) alter

the control input value once every sampling interval Ts. The

model described by (7), (8) and Table II is then discretized

as follows.

x ((n + 1)Ts) = eA(u(nTs))Tsx(nTs), (9a)

u((n + 1)Ts) = u(nTs) + ∆n, (9b)

y(nTs) = x2(nTs), (9c)

for any n ∈ Z+. The matrix A(u(nTs)) is given by

A(u(nTs)) =

[

−λ1(u(nTs)) λ2(u(nTs))
λ1(u(nTs)) −λ2(u(nTs))

]

,

where the values of λ1 and λ2 are given in Table II. The

term ∆n represents the update of the control input value.

At any time t = nTs, the update of the control input

is computed by solving the following receding horizon

optimization problem (RCOP) iteratively.

Receding horizon optimization problem (RCOP). Find

∆n+k, k ∈ {0, . . . , N − 1} that minimize the cost

J =

N−1
∑

k=0

|y((n + k)Ts) − yr((n + k)Ts)| + γ |∆n+k| ,

(10)

subject to

timet t+Ts
... t+NTs

implemented control input

optimization horizon

Fig. 6. The receding horizon optimization problem. At any time t, only
the first interval of the computer control input is implemented.

• the initial condition x(nTs)
• the system dynamics ((8), (9) and Table II ), and

• for k ∈ {0, . . . , N − 1},

|∆n+k| ≤ 2 · 10−3,

1.4 · 10−3 ≤ u((n + k)Ts) ≤ 2 · 10−3.

Variable N defines the length of optimization horizon.

Although the optimization is solved for N steps, only the

control input value of the first interval is actually imple-

mented. At the next step, the RCOP is re-initialized with the

actual state as the initial condition. A schematic describing

the algorithm is shown in Figure 6.

The cost function J in (10) is designed such that the

tracking error y−yr is minimized. However we also include

a term that carries a penalty for ∆. The idea behind this

inclusion is to make sure that the update of the control input

does not fluctuate too much.

One advantage of using model predictive control over the

other control strategies that we have designed in [15], [16]

is that we can impose that the control input value does

not fluctuate a lot while making sure that the output of

the system (the fraction of induction) tracks the reference

value. Although at sampling times the control input can be

discontinuous, if the sampling interval Ts is large enough,

the control can still be realistically implemented.

V. SIMULATION RESULTS

We simulate the application of the MPC controller on a

plant with 5000 cells. We fix the horizon length N = 2
and the weight γ = 10 in the cost function (10). The

reference signal is fixed at 0.5. That is, we aim at attaining

and maintaining a 50% induction fraction.

The hybrid dynamical system defined by (8), (9) and Table

II is modeled in HYSDEL [25] and translated into a mixed

logical dynamical system [17] having 3 continuous states,

1 continuous input, 2 continuous outputs, 15 continuous

auxiliary variables, 5 binary variables, and 80 mixed-integer

linear inequalities.

Figure 7 shows the comparative simulation results of both

the abstract model and stochastic hybrid model of the colony

of bacteria with 5000 cells for two initial conditions, fully

induced and fully uninduced. The sampling time is fixed

at Ts = 10 min. We can see that the desired fraction of

induction of 50% is attained and maintained.

In Figure 7 we can also see that the simulation results

using the abstract model and the stochastic hybrid model are

close. This demonstrates the effectiveness of using the much

simpler abstract model in designing the controller, despite of

the application on the stochastic hybrid model.
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obtained from the abstract model. The solid lines are the results from the
stochastic model. Bottom: The level of Te for both simulations (in mM)
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of TMG in the cells when the MPC controller is used

The hybrid MPC controller was designed and simulated

through the Hybrid Toolbox for Matlab [26] using the mixed-

integer linear programming solver GLPK [27]. The CPU time

for controller evaluation is on average 32 ms (280 ms in the

worst case) on a 1.2 GHz laptop computer running Matlab

7.3, which is several orders of magnitude smaller than the

sampling time Ts = 10 min.

Figure 8 shows a dynamic histogram of the internal

concentration of TMG in the cells, when the MPC controller

is used with fully uninduced initial condition. We can see

that at the beginning, the distribution is concentrated at the

uninduced state. As time passes, a second cluster, which

corresponds to induced cells appears. Note that, after 350

minutes the higher cluster slightly shifts to the right and sta-

bilizes there with small deviations, as it is also demonstrated

in the left section of Figure 7.

Intuitively, reducing the sampling time Ts leads to better

tracking performance at the cost of (possibly) more fluctua-

tion of the control input and more computation. In real time

applications, it might not be possible to change the control

input too frequently. Therefore, the choice of sampling time

should be a balance between the real world limitations and
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Fig. 9. Simulation results for different Ts values. Top: Fraction of induced
cells after 350 minutes. Bottom: The level of Te for both simulations (in
mM) Left: Ts=10min. Right: Ts=2min.

the steady state performance. We can observe this trade-off

in Figure 9. While the steady state tracking error is ±2%
for the model with Ts=10min, it is ±1% for the model with

Ts=2min.

In a previous work [16], we have implemented three

different controllers, namely on-off controller, flow controller

and hybrid PI controller on the same model. We showed that

hybrid PI controller is superior to the other two strategies

with respect to the steady state tracking error. However, as

it is shown in Figure 10, the output variation and the steady

state tracking error of the MPC controller is smaller than that

of the hybrid PI controller. In addition, in MPC controller the

external control input follows a much more regular pattern

compared to hybrid PI contoller which can also be seen in

Figure 10. Unlike hybrid PI controller, in MPC controller

scheme, the changes in input occur in a reasonable time scale

which is an important issue for possible applications.

The only drawback of MPC control is its computational

cost. As it involves a receding horizon optimization problem

(RCOP) as described in the previous section. However, we

only need to solve the RCOP at every sampling time Ts,

which is quite long due to the slow dynamics of the system,

and much larger than the CPU time required by a personal

computer to solve the mixed-integer programming problem

associated with RCOP. With the ever increasing pervasive-

ness of computation technologies, it is realistic to say that

the designed hybrid MPC controller can be implemented in

a real application.

VI. CONCLUDING REMARKS

In this paper we present a hybrid model predictive control

(MPC) based feedback strategy for regulating the induction

fraction of a colony of Escherichia coli. The model used in

the MPC scheme is the abstract model of the system designed

to describe the colony scale dynamics [15], [16]. The abstract

model, which is a finite state Markov chain (Figure 3), is

much simpler than the full stochastic hybrid model of the

biochemical dynamics of the lactose regulation system (4).
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The hybrid MPC control strategy is based on solving a

receding horizon optimization problem, whose cost function

is designed to minimize tracking error and fluctuation of

the control input signal. Upon simulation, we observe that

the abstract model is indeed suitable for control. We also

observe the intuitive trade-off between fluctuation of the

control input signal and the tracking error when different

sampling intervals Ts are used.

One of the attractions for using MPC based strategy,

compared to other strategies that we have developed pre-

viously [15], [16], is the fact that the control input signal

does not have to change in realtime. Since the control

input is the concentration level of some enzyme in the

environment, less fluctuation generally leads to better and/or

easier implementability of the control strategy.

The fact that the computational load of the hybrid MPC

based strategy is much higher than those of the other

strategies is alleviated by the fact that the slow dynamics

of the system lends itself to long sampling interval. Long

sampling intervals allows the computation to be solved in a

long time, rendering the MPC based strategy feasible.

Many biochemical systems are slow in nature. Many

synthetic genetic circuits, such as the well known toggle

switch and the repressilator [3], [28] exhibit slow dynamics

(in the order of hours). As is the case with the lactose

regulation system of E. coli, control of such systems might

be particularly amenable to MPC based strategies.
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