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Abstract— In this paper, we consider metric transition sys-
tems which are transition systems equipped with metrics
for observation and synchronization labels. The existence of
metrics leads to the introduction of two new concepts, (i)
(ǫ, δ)− approximate (bi)simulation of transition systems and
(ii) approximate synchronization of transition systems.

We show that the notion of (ǫ, δ)− approximate
(bi)simulation can be thought of as a generalization or relax-
ation of the earlier work on δ− approximate (bi)simulation
by Girard and Pappas. We demonstrate the link between
reachability verification and approximate (bi)simulation, and
we also provide a characterization of (bi)simulation relations
using a tool similar to the (bi)simulation function.

Approximate synchronization can be thought of as a gen-
eralization of synchronization of transition systems in the
usual sense. In fact, the usual synchronization and interleaving
synchronization are two special cases of the notion of approx-
imate synchronization developed in this paper. Furthermore,
we present a result on the compositional properties of the
approximate (bi)simulation with respect to the approximate
synchronization.

I. I NTRODUCTION

System abstraction is an important tool for analyzing
complex systems. With abstraction, the complexity of the
systems (typically associated with the size of the state space)
can be decreased, resulting in lesser computational cost in
the analysis [1], [2], [3].

System abstraction is traditionally associated with system
equivalence, in the sense abstraction of a complex system
amounts to constructing an equivalent system with lesser
complexity. The equivalence guarantees that the results of
analysis performed on the less complex system can be carried
over into the complex system. Language equivalence and
bisimulation (and its variants) are two of the most commonly
used notion of system equivalence for systems abstraction
[4], [5], [6], [7].

Requiring the abstraction to be equivalent to the original
system is sometimes too restrictive. Researchers have been
working to develop more relaxed abstraction theories that
enable further model simplification. One of the ideas is to
relax the requirement that the abstraction is equivalent tothe
original system, and replace with that the abstraction is only
approximatelyequal to the original system (see, e.g. [8], [9],
[10], [11]). The key ingredient to these theories is a metric
that can quantify the distance between the system and its
abstraction, and hence the quality of the abstraction. In this
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paper, we start with the idea of approximate bisimulation
of transition systems as developed recently in [11], [12],
[13]. Transition systems is a convenient framework to use
because many interesting classes of dynamical systems can
be embedded as transition systems, and abstraction can be
studied as abstraction of the transition system [14], [5].

In this paper, we extend the previous work by introducing
a pseudo-metric on set of labels of the transition systems.
Having a notion of distance in the set of labels enables us
to define a notion ofapproximate synchronization. Loosely
speaking, by approximate synchronization we mean allowing
systems to synchronize not only on the same label, but also
with labels that are close. Approximate synchronization can
be thought of as a relaxation of the notion of synchronization
in the usual sense.

Contrary toexactnotions of synchronization for traditional
transition systems,approximatesynchronization is a much
more natural and robust concept especially when different
system need to synchronize over temporal or spatial vari-
ables where exact synchronization may be too restrictive
or not robust. For example, random communication delays
between geographically distant subsystems requires a notion
of synchronization that does not require strict simultaneity.
Thus, approximation in the synchronization can be related
to tolerance in timing. Similarly, in the area of multi-agent
control, if spatial information about the agents is captured on
the labels, then approximate synchronization can be used as
a compact and natural way of representing communication
(or cooperation) range.

In this paper, we first extend the notion of approximate
(bi)simulation of metric transition systems, by introducing a
pseudometric on the set of labels. We elucidate the relation
between our work and an earlier work by Girard and Pap-
pas [11], [12], and we also provide a way to characterize
approximate (bi)simulation relations by using an extension
of the (bi)simulation functions. We then introduce the notion
of approximate synchronization and present a result that
shows that approximate (bi)simulation is compositional with
respect to approximate synchronization. Even further, we
show that this result also extends to the case where clusters
of transition systems (called composite transition systems)
are synchronized.

The remaining of the paper is organized as follows. Sec-
tion II presents the extension of approximate (bi)simulation
by including a pseudometric in the set of labels of the
transition systems. In Section III we present a way to charac-
terize the approximate (bi)simulation relations discussed in
the preceding section, by means of bisimulation functions.



Section IV is devoted for introducing the idea of approx-
imate synchronization and presenting its properties. Here
we also present the compositional properties of approximate
(bi)simulation under approximate synchronization. In Section
V we give some concluding remarks and possible future
research directions.

II. M ETRIC TRANSITION SYSTEMS

In this section, we extend the idea of approximate simula-
tion and bisimulation, by introducing a pseudometric on the
set of labels of the transition systems.

We define a transition system as a six tupleT = (Q,Σ,→
, Q0,Π, 〈·〉), whereQ is the set of states,Σ is the set of
labels,→⊂ Q × Σ × Q is a set of transitions,Q0 is the
set of initial states,Π is the set of possible observations,
〈·〉 : Q → Π is the observation map. The transition system
is called ametric transition systemif the set of observations
Π and labelsΣ are equipped with pseudometricsdΠ anddΣ

respectively1.
Notation 2.1: In this paper we shall use the following

notations.

∀ε ≥ 0, σ ∈ Σ, Bε(σ) := {σ′ ∈ Σ | dΣ(σ, σ′) ≤ ε},

∀ε ≥ 0, z ∈ Π, Bε(z) := {z′ ∈ Π | dΠ(z, z′) ≤ ε},

∀q ∈ Q,S ⊂ Σ, Ω(q, S) := {q′ ∈ Q | ∃σ ∈ S, q
σ
→ q′}.

Definition 2.2: Given two transition systemsTi =
(Qi,Σ,→i, Q

0
i ,Π, 〈·〉i), i = 1, 2. A relation R ⊂ Q1 × Q2

is a (ε, δ)− approximate simulation of T1 by T2, δ, ε ≥ 0,
if for any (q1, q2) ∈ R,
(i) dΠ(〈q1〉1 , 〈q2〉2) ≤ δ,

(ii) For any a ∈ Σ, q′1 ∈ Q1 such thatq1
a
→ q′1, there exists

an a′ ∈ Σ andq′2 ∈ Q2 such that

dΣ(a, a′) ≤ ε, q2
a′

→ q′2, (q′1, q
′
2) ∈ R.

Notice that ε and δ represent the precision in the ap-
proximation in terms of the synchronization labels and the
observations respectively. A(0, δ)−approximate simulation
relation is a δ− approximate simulation in the sense of
[11], which requires exact synchronization. A(0, 0)− ap-
proximate simulation relation is a classical exact simulation
relation with exact synchronization. Furthermore, the follow-
ing proposition reveals the partial ordering of approximate
simulation relations.

Proposition 2.3:Given two transition systemsTi =
(Qi,Σ,→i, Q

0
i ,Π, 〈·〉i), i = 1, 2. Let R ⊂ Q1 × Q2. For

any δ′ ≥ δ ≥ 0 and ε′ ≥ ε ≥ 0 the following statements
hold.
(i) If R is a (ε, δ)−approximate simulation ofT1 by T2 then
it is also a(ε′, δ)− approximate simulation ofT1 by T2.
(ii) If R is a(ε, δ)−approximate simulation ofT1 by T2 then
it is also a(ε, δ′)− approximate simulation ofT1 by T2.

A (ε, δ)−approximate bisimulation relation can be defined
as a symmetric version of a(ε, δ)−approximate simulation,
as follows.

1From this point on we assume that all transition systems are metric
transition systems, hence we do not distinguish between the two notions

Definition 2.4: Given two transition systemsTi =
(Qi,Σ,→i, Q

0
i ,Π, 〈·〉i), i = 1, 2. A relation R ⊂ Q1 × Q2

is a (ε, δ)− approximate bisimulation betweenT1 andT2,
δ, ε ≥ 0, if R is both a(ε, δ)− approximate simulation of
T1 by T2 and a(ε, δ)− approximate simulation of T2 by
T1.

Corollary 2.5: Given two transition systemsTi =
(Qi,Σ,→i, Q

0
i ,Π, 〈·〉i), i = 1, 2. Let R ⊂ Q1 × Q2. For

any δ′ ≥ δ ≥ 0 and ε′ ≥ ε ≥ 0 the following statements
hold.
(i) If R is a (ε, δ)− approximate bisimulation betweenT1

and T2 then it is also a(ε′, δ)− approximate bisimulation
betweenT1 andT2.
(ii) If R is a (ε, δ)− approximate bisimulation betweenT1

and T2 then it is also a(ε, δ′)− approximate bisimulation
betweenT1 andT2.

Approximate simulation and bisimilarity between transi-
tion systems are characterized as follows.

Definition 2.6: Given two transition systemsTi =
(Qi,Σ,→i, Q

0
i ,Π, 〈·〉i), i = 1, 2. We say thatT2 simulates

T1 with precision (ε, δ) if there existsR, a (ε, δ)− approx-
imate simulation ofT2 by T1, such that for everyq0

1 ∈ Q0
1,

there exists aq0
2 ∈ Q0

2 such that(q0
1 , q0

2) ∈ R. This relation
is denoted byT1 ¹ε,δ T2.

Definition 2.7: Given two transition systemsTi =
(Qi,Σ,→i, Q

0
i ,Π, 〈·〉i), i = 1, 2. We say thatT1 and T2

are approximately bisimilar with precision (ε, δ) if there
existsR, a(ε, δ)− approximate bisimulation betweenT1 and
T2, such that
(i) for every q0

1 ∈ Q0
1, there exists aq0

2 ∈ Q0
2 such that

(q0
1 , q0

2) ∈ R,

(ii) for every q0
2 ∈ Q0

2, there exists aq0
1 ∈ Q0

1 such that
(q0

1 , q0
2) ∈ R.

This relation is denoted byT1 ≈ε,δ T2.
The concept of(ε, δ)− approximate bisimulation is illus-

trated in Figure 1. Based on Proposition 2.3 and Corollary
2.5, we can derive the following proposition.

Proposition 2.8:Given two transition systemsT1 andT2.
For anyδ′ ≥ δ ≥ 0 andε′ ≥ ε ≥ 0. the following statements
hold.
(i) If T1 ¹ε,δ T2 thenT1 ¹ε′,δ T2.
(ii) If T1 ¹ε,δ T2 thenT1 ¹ε,δ′ T2.
(iii) If T1 ≈ε,δ T2 thenT ≈ε′,δ T2.
(iv) If T1 ≈ε,δ T2 thenT ≈ε,δ′ T2.

For any ε, δ ≥ 0, the approximate bisimulation relation
≈ε,δ is clearly reflexive and symmetric, i.e. for any transition
systemsT1 andT2,

(reflexive) T1 ≈ε,δ T1.
(symmetric) If T1 ≈ε,δ T2, thenT2 ≈ε,δ T1.
Another property of interest is the transitivity property of the
approximate simulation and bisimulation.

Proposition 2.9:Given three transition systemsT1, T2

and T3. For any δ, δ′ ≥ 0 and ε, ε′ ≥ 0. the following
statements hold.
(i) If T1 ¹ε,δ T2 andT2 ¹ε′,δ′ T3, thenT1 ¹ε+ε′,δ+δ′ T3.
(ii) If T1 ≈ε,δ T2 andT2 ≈ε′,δ′ T3, thenT1 ≈ε+ε′,δ+δ′ T3.

Proof: We only prove (i), since (ii) can be proven
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Fig. 1. An illustration of approximate (bi)simulation with labels between
two transition systemsT1 and T2. The outputs of related states must be
within at mostδ. The two transition systems do not have to synchronize
with the same labels. Rather, the labels can be at mostε apart.

in an analogous manner. Suppose thatT1 ¹ε,δ T2 and
T2 ¹ε′,δ′ T3, and R12 and R23 are the(ε, δ)− approxi-
mate simulation of T1 by T2, and (ε′, δ′)− approximate
simulation of T2 by T3 respectively. We shall prove that

R13 := R12 ◦ R23,

= {(q1, q3) | ∃q2, (q1, q2) ∈ R12, (q2, q3) ∈ R23} (1)

is a (ε + ε′, δ + δ′)− approximate simulation of T2 by T3.
Take any(q1, q3) ∈ R23. First, we show that

dΠ(〈q1〉1 , 〈q3〉3) ≤ δ + δ′. (2)

By definition of R13, there exists aq2 ∈ Q2 such that
(q1, q2) ∈ R12 and (q2, q3) ∈ R23. From there we can infer
that

dΠ(〈q1〉1 , 〈q2〉2) ≤ δ,

dΠ(〈q2〉2 , 〈q3〉3) ≤ δ′.

Equation (2) follows because of the pseudometric properties.
Now we shall show that ifq1

σ
→ q′1 for someσ ∈ Σ and

q′1 ∈ Q1, then there existσ′ ∈ Σ andq′3 ∈ Q3 such that

(q′1, q
′
3) ∈ R23, q3

σ′

→ q′3, dΣ(σ, σ′) ≤ ε + ε′. (3)

By the existence of aq2 ∈ Q2 as above, we can infer the
existence of aq′2 ∈ Q2 andσ′′ ∈ Σ such that

(q′1, q
′
2) ∈ R12, q2

σ′′

→ q′2, dΣ(σ, σ′′) ≤ ε.

However, this in turn implies the existence of aq′3 ∈ Q3 and
σ′ ∈ Σ such that

(q′2, q
′
3) ∈ R23, q3

σ′

→ q′3, dΣ(σ′, σ′′) ≤ ε′.

Again, (3) follows immediately from the definition ofR23

and the pseudometric properties.

The relation between the reachable sets (of observations)
of the transition systems and the approximate (bi)simulation
is summarized as follows.

Definition 2.10: Given a transition systemT = (Q,Σ,→
, Q0,Π, 〈·〉), an observationy ∈ Π belongs to the reachable
set of the transition systemR(T ) if there exists an initial
statex0 ∈ Q0 and a trajectory starting fromx0,

x0
a1→ x1

a2→ · · ·
an→ xn,

such that〈xn〉 = y.

Theorem 2.11:Given two transition systemsT1 and T2,

the following relations hold.
(i) T1 ¹ε,δ T2 for someε, δ ≥ 0 implies

sup
y1∈R(T1)

inf
y2∈R(T2)

dΠ(y1, y2) ≤ δ. (4)

(ii) T1 ≈ε,δ T2 for someε, δ ≥ 0 implies

max

(

sup
y1∈R(T1)

inf
y2∈R(T2)

dΠ(y1, y2),

sup
y2∈R(T2)

inf
y1∈R(T1)

dΠ(y1, y2)

)

≤ δ. (5)

Proof: (i) We need to show that ifT1 ¹ε,δ T2 for some
ε, δ ≥ 0, then for anyy1 ∈ R(T1), there exists ay2 ∈ R(T2)
such thatdΠ(y1, y2) ≤ δ. There exists a trajectory ofT1

starting fromx1,0 ∈ Q0
1,

x1,0
a1→ x1,1

a2→ · · ·
an→ x1,n,

such that〈x1,n〉1 = y1. Suppose thatR ⊂ Q1 × Q2 is a
(ε, δ) -approximate simulation ofT1 by T2. By the definition
of approximate simulation, we can infer that there exists a
trajectory ofT2 starting from ax1,0 ∈ Q0

1,

x2,0
a′

1→ x2,1
a′

2→ · · ·
a′

n→ x2,n,

(x1,i, x2,i) ∈ R.

Denote 〈x2,n〉2 = y2. It follows from the definition of
approximate simulation thatdΠ(y1, y2) ≤ δ.

(ii) Analogous to part (i).
The application of approximate (bi)simulation as an aid

in safety verification of dynamical systems is presented
in [11], [12]. Given a dynamical system embedded as a
transition systemT1, another dynamical system embedded as
a transition systemT2 is constructed such thatT1 ¹0,δ T2.
The system corresponding withT2 is simpler, in the sense
of smaller state space. The reachable set ofT1 can thus be
approximated with that ofT2 with precisionδ.

The introduction of a metric for the labels can be thought
of as a relaxation that allows for tighter bound in the
approximation of the reachable set. This is illustrated on the
continuous time dynamical system

dx

dt
= f(x, u), y = h(x), (6)

x ∈ X , x(0) ∈ X 0, u ∈ U , y ∈ Y ⊂R
m. (7)



This system can be embedded into a transition systemT =
(Q,Σ,→, Q0,Π, 〈·〉), whereQ = X , Σ = R+, Q0 = X 0,
Π = Y, 〈x〉 = h(x).

→⊂ R
n × R+ × R

n,

such thatx
τ
→ x′ if and only if there existx0 ∈ X 0 and

u : [0, τ ] → U such that the continuous solution to the
differential equation

dx

dt
= f(x, u), x(0) = x0 (8)

satisfiesx(τ) = x′. Alternatively stated,x
τ
→ x′ if and only

if there is an input that can drive the system starting at the
initial statex to the statex′ in τ time unit. The set of labels
and observations,R+ andY ⊂ R

m are equipped with the
Euclidian distance‖·‖. With this interpretation of transition
system, the following implication can be proven.

Proposition 2.12:Given two transition systemsT1 and
T2, the following relations hold.
(i) T1 ¹∞,δ T2 for someδ ≥ 0 if and only if

sup
y1∈R(T1)

inf
y2∈R(T2)

dΠ(y1, y2) ≤ δ. (9)

(ii) T1 ≈∞,δ T2 for someδ ≥ 0 if and only if

max

(

sup
y1∈R(T1)

inf
y2∈R(T2)

dΠ(y1, y2),

sup
y2∈R(T2)

inf
y1∈R(T1)

dΠ(y1, y2)

)

≤ δ. (10)

Therefore, by relaxing the requirement on the labels, we
can get a result stronger than Theorem 2.11. A different
treatment of a similar idea is presented in [15].

III. E XTENSION OF THE(BI)SIMULATION FUNCTIONS

In this section we discuss the extension of the concept
of (bi)simulation functions [11], to deal with metrics on
synchronization labels.

Definition 3.1: Given two transition systemsTi =
(Qi,Σ,→i, Q

0
i ,Π, 〈·〉i), i = 1, 2. A function φ : Q1×Q2 →

R+ ∪ {∞} is an ε - simulation function ofT1 by T2 if for
any q1 ∈ Q1 andq2 ∈ Q2,

φ(q1, q2) ≥ dΠ(〈q1〉1 , 〈q2〉2), (11a)

φ(q1, q2) ≥ sup
q1

σ
→q′

1

inf
q2

Bε(σ)
→ q′

2

φ(q′1, q
′
2). (11b)

Notice that anε−simulation function can be thought of
as a relaxed version of bisimulation function in the sense
of [11]. In order the match a transition ofT1, T2 does not
necessarily perform a transition with the same label. Rather,
T2 can choose any move, as long as its label is at mostε

apart from that ofT1. A bisimulation function in the sense
of [11] is a 0− simulation function.

Proposition 3.2:Given two transition systemsT1 andT2.
If φ is anε−simulation function ofT1 by T2, for someε ≥ 0,
then it is also anε′−simulation function ofT1 by T2, for
any ε′ ≥ ε ≥ 0.

Definition 3.3: Given two transition systemsTi =
(Qi,Σ,→i, Q

0
i ,Π, 〈·〉i), i = 1, 2. A function φ : Q1×Q2 →

R+ ∪ {∞} is an ε− bisimulation function betweenT1 and
T2 if it is both anε - simulation function ofT1 by T2 and an
ε - simulation function ofT2 by T1. That is, for anyq1 ∈ Q1

andq2 ∈ Q2,

φ(q1, q2) ≥ dΠ(〈q1〉1 , 〈q2〉2), (12)

φ(q1, q2) ≥ sup
q1

σ
→q′

1

inf
q2

Bε(σ)
→ q′

2

φ(q′1, q
′
2), (13)

φ(q1, q2) ≥ sup
q2

σ
→q′

2

inf
q1

Bε(σ)
→ q′

1

φ(q′1, q
′
2). (14)

The relation between (bi)simulation functions and approx-
imate (bi)simulation can be summarized in the following
theorems.

Theorem 3.4:Given two transition systemsT1 andT2. If
φ is anε− simulation function ofT1 by T2, for someε ≥ 0,
then for anyδ ≥ 0, its δ− level set,

Rδ(φ) := {(q1, q2) | φ(q1, q2) ≤ δ},

is a (ε, δ)− approximate simulation of T1 by T2.
Proof: Take any(q1, q2) ∈ Rδ(φ), by (11a) we have

that,
dΠ(〈q1〉1 , 〈q2〉2) ≤ δ. (15)

For anyσ ∈ Σ such thatq1
σ
→ q′1, (11b) implies the existence

of q′2 ∈ Q2 andσ′ ∈ Σ such that

q2
σ′

→ q′2, dΣ(σ, σ′) ≤ ε,

φ(q′1, q
′
2) ≤ δ.

Therefore(q′1, q
′
2) ∈ Rδ(φ).

Theorem 3.5:Given two transition systemsT1 andT2. If
φ is an ε− bisimulation function betweenT1 and T2, for
someε ≥ 0, then for anyδ ≥ 0, its δ− level set,

Rδ(φ) := {(q1, q2) | φ(q1, q2) ≤ δ},

is a (ε, δ)− approximate bisimulation betweenT1 andT2.
Proof: Analogous to that of Theorem 3.4.

Generally speaking, the characterization of anε− simula-
tion function is similar to that of a simulation function when
there is nondeterminism in the system.

IV. A PPROXIMATE SYNCHRONIZATION

Typically, synchronization of transition systems is formal-
ized by (exact) synchronization of the labels. In this sec-
tion, we introduce the idea of approximate synchronization.
Loosely speaking, the idea is to let two transition systems
synchronize using labels that are close, but not necessarily
equal. Closeness is defined in the sense of the a pseudometric
in the set of labels.

A. Approximate synchronization of transition systems

Definition 4.1: Given two transition systemsTi =
(Qi,Σ,→i, Q

0
i ,Πi, 〈·〉i), i = 1, 2. The approximate syn-

chronization operator‖ε, ε ≥ 0, acting on the two systems
results in another transition system

T := T1 ‖ε T2, (16)



whereT = (Q1 × Q2,Σ × Σ,→, Q0
1 × Q0

2,Π1 × Π2, 〈·〉).

The transition relation→ is such that(q1, q2)
σ,σ′

→ (q′1, q
′
2)

iff q1
σ
→1 q′1, q2

σ′

→2 q′2, dΣ(σ, σ′) ≤ ε. The observation map
〈·〉 is defined as

〈(q1, q2)〉 := (〈q1〉1 , 〈q2〉2). (17)
Notice that the composite transition systemT = T1 ‖ε T2

is quite different from the transition systemsT1 and T2, in
the following sense:

• The observation space ofT is a product of those ofT1

andT2.
• The set of labels ofT is also a product of those ofT1

andT2.

We need to define a notion of pseudometric for an obser-
vation space that is a product of two observation spaces, and
similarly for the set of labels.

Definition 4.2: The observation spaceΠ1×Π2 is equipped
with the following pseudometric.

dΠ ((π1, π2), (π
′
1, π

′
2)) := dΠ1

(π1, π
′
1) + dΠ2

(π2, π
′
2). (18)

The set of labelsΣ × Σ is equipped with the following
pseudometric.

dΣ2 ((σ1, σ2), (σ
′
1, σ

′
2)) := max

i=1,2
max
j=1,2

dΣ(σi, σ
′
j). (19)

Approximate synchronization can be thought of as a
relaxed version of the exact synchronization. Exact synchro-
nization is a special case of approximate synchronization‖ε,
namely whenε = 0. Obviously, the larger the tolerance (ε)
in the synchronization is, the more flexible the two systems
can evolve with respect to each other. If we assume that
the transition systems have stutter transition [16], the case
when ε = ∞ can be thought of as the situation when the
executions of the two transition systems are interleaving.The
executions can interleave because one transition system can
always synchronize with the stutter transition of the other.

The fact that defined notion of approximate synchroniza-
tion is a relaxation of the traditional notion of synchroniza-
tion is reflected in the following proposition.

Proposition 4.3:Given two transition systemsTi =
(Qi,Σ,→i, Q

0
i ,Π, 〈·〉i), i = 1, 2. For any ε, ε′ ≥ 0, the

following holds.

T1 ‖ε T2 ¹0,0 T1 ‖ε+ε′ T2. (20)
Proof: The identity relation in(Q1 ×Q2)× (Q1 ×Q2)

is a (0, 0)− approximate simulation relation ofT by T ′.
This proposition tells us that a synchronization with higher

tolerance always simulates one with less tolerance.
It is already known that the notion of approximate

(bi)simulation has a compositional property [11] with respect
to exact synchronization. In the following we shall show that
the extended notion of approximate (bi)simulation that we
present in this paper also has a compositional property with
respect to approximate synchronization.

Theorem 4.4:Consider transition systemsT1, T2, T
′
1 and

T ′
2. Suppose that the transition systemsT1 and T ′

1 have
observation spaceΠ1, while T2 and T ′

2 have observation
spaceΠ2. Moreover we assume that all of them share the

same set of labelsΣ. If T1 ¹ε1,δ1
T ′

1 andT2 ¹ε2,δ2
T ′

2, then
for any ε ≥ 0,

T1 ‖ε T2 ¹ε+max(ε1,ε2),δ1+δ2
T ′

1 ‖ε+ε1+ε2
T ′

2. (21)
Proof: Denote

T := T1 ‖ε T2, T
′ := T ′

1 ‖ε+ε1+ε2
T ′

2. (22)

SinceT1 ¹ε1,δ1
T ′

1 andT2 ¹ε2,δ2
T ′

2, there exist appropriate
approximate simulation relationsR1 ⊂ Q1 × Q′

1 andR2 ⊂
Q2 ×Q′

2 (see Definition 2.6). We defineR ⊂ (Q1 ×Q2)×
(Q′

1 × Q′
2) as follows.

((q1, q2), (q
′
1, q

′
2)) ∈ R :⇔

(q1, q
′
1) ∈ R1 and (q2, q

′
2) ∈ R2.

We are going to prove thatR is a (ε + max(ε1, ε2), δ1 +
δ2)− approximate simulation ofT by T ′. Take any
((q1, q2), (q

′
1, q

′
2)) ∈ R.

dΠ ((〈q1〉1 , 〈q2〉2) , (〈q′1〉1′ , 〈q′2〉2′)) =

= dΠ1
(〈q1〉1 , 〈q′1〉1′) + dΠ2

(〈q1〉2 , 〈q′1〉2′)

≤ δ1 + δ2. (23)

The inequality is due to the fact that(qi, q
′
i) ∈ Ri, i = 1, 2.

For anyα, β ∈ Σ and (q̃1, q̃2) ∈ Q1 × Q2 such that

dΣ(α, β) ≤ ε, (q1, q2)
α,β
→T (q̃1, q̃2),

we need to show that there existα′, β′ ∈ Σ and (q̃′1, q̃
′
2) ∈

Q′
1 × Q′

2 such that

dΣ(α′, β′) ≤ ε + ε1 + ε2, (q
′
1, q

′
2)

α′,β′

→T ′ (q̃′1, q̃
′
2),

dΣ2 ((α, β) , (α′, β′)) ≤ ε + max(ε1, ε2),

((q̃1, q̃2), (q̃
′
1, q̃

′
2)) ∈ R.

Because(qi, q
′
i) ∈ Ri, i = 1, 2, we know that there exist

α′, β′ ∈ Σ and (q̃′1, q̃
′
2) ∈ Q′

1 × Q′
2 such that

dΣ(α, α′) ≤ ε1, q
′
1

α′

→T ′

1
q̃′1, (q̃1, q̃

′
1) ∈ R1,

dΣ(β, β′) ≤ ε2, q
′
2

β′

→T ′

2
q̃′2, (q̃2, q̃

′
2) ∈ R2.

It follows immediately that

((q̃1, q̃2), (q̃
′
1, q̃

′
2)) ∈ R.

¿From the triangular inequality, we obtain

dΣ(α′, β′) ≤ dΣ(α, β) + dΣ(α, α′) + dΣ(β, β′),

≤ ε + ε1 + ε2,

and therefore(q′1, q
′
2)

α′,β′

→T ′ (q̃′1, q̃
′
2). Furthermore,

max
i∈{α,β}

max
j∈{α′,β′}

dΣ(i, j) ≤ ε + max(ε1, ε2).

Hence
dΣ2 ((α, β) , (α′, β′)) ≤ max(ε1, ε2).

Finally, we need to show that for any(q0
1 , q0

2) ∈
Q0

1 × Q0
2 there exists(q′01 , q′02 ) ∈ Q′0

1 × Q′0
2 such that

(

(q0
1 , q0

2), (q′01 , q′02 )
)

∈ R. This fact is a direct consequence



of R1 and R2 being the approximate simulation relations
that defineT1 ¹ε1,δ1

T ′
1 andT2 ¹ε2,δ2

T ′
2.

This result can be extended to approximate bisimulation,
as follows.

Theorem 4.5:Given transition systemsT1, T2, T
′
1 andT ′

2.
Suppose that the transition systemsT1 andT ′

1 have observa-
tion spaceΠ1, while T2 andT ′

2 have observation spaceΠ2.
Moreover we assume that all of them share the same set of
labels Σ. If T1 ≈ε1,δ1

T ′
1 and T2 ≈ε2,δ2

T ′
2, then for any

ε ≥ 0,

T1 ‖ε T2 ≈ε+max(ε1,ε2),δ1+δ2
T ′

1 ‖ε+ε1+ε2
T ′

2. (24)
Proof: Analogous to that of Theorem 4.4.

Notice that whenε = ε1 = ε2 = 0, Theorem 4.4 and 4.5
are reduced to the already known compositionality properties
of the approximate (bi)simulation relation in [11].

B. Composite transition systems

As explained in the previous subsection, the result of
approximately synchronizing two transition systems is a
kind of composite transition systems, whose transitions are
labelled by a pair of labels. It is quite straightforward
to generalize this idea, for example if we want to have
several transition systems synchronizing. In this subsection,
we formalize this idea and make it possible to discuss
approximate synchronization of two (or more) composite
transition systems.

Definition 4.6: Given a set of labelsΣ, a composite
transition systemT = (Q,Σn,→, Q0,Π, 〈·〉) is a transition
system with a set of labelsΣn, 1 < n ∈ N. The numbern is
called themultiplicity of the composite transition systems.

Before we proceed to define approximate synchronization
of composite transition systems (possibly with different mul-
tiplicities), we need to define a notion of distance between
elements inΣn andΣm, wheren andm are not necessarily
equal.

Definition 4.7: Givenσ ∈ Σn andω ∈ Σm, we define the
distance betweenσ andω as

dΣ∗(σ, ω) = dΣ∗(ω, σ) := max
i=1,...,n

max
j=1,...,m

dΣ(σi, ωj).

Definition 4.8: Given two composite transition systems
Ti = (Qi,Σ

ni ,→i, Q
0
i ,Πi, 〈·〉i), i = 1, 2. Theapproximate

synchronization operator‖ε, ε ≥ 0, acting on the two com-
posite transition systems yield another composite transition
system

T := T1 ‖ε T2, (25)

whereT = (Q1 × Q2,Σ
n1+n2 ,→, Q0

1 × Q0
2,Π1 × Π2, 〈·〉).

The transition relation→ is such that(q1, q2)
σ,σ′

→ (q′1, q
′
2) iff

q1
σ
→1 q′1, q2

σ′

→2 q′2, dΣ∗(σ, σ′) ≤ ε. The observation map
〈·〉 is defined as

〈(q1, q2)〉 := (〈q1〉1 , 〈q2〉2). (26)

The new observation spaceΠ = Π1 × Π2 is equipped with
the pseudometric

dΠ ((π1, π2), (π
′
1, π

′
2)) = dΠ1

(π1, π
′
1) + dΠ2

(π2, π
′
2).

T1 T2

T'1 T'2

Fig. 2. Compositional properties of approximate (bi)simulation. Each el-
lipse symbolizes approximate synchronization. The arrows indicate approxi-
mate (bi)simulation. The relation between the precisions of the approximate
(bi)simulations is given in Theorem 4.9 and not displayed here.

Notice that composite transition systems are intrinsically
transition systems with an additional assumption in the struc-
ture of their sets of labels. Two composite transition systems
with the same multiplicity share the same set of labels,
and hence the concept of approximate (bi)simulation applies
to them. The compositional properties of the approximate
(bi)simulation in the previous subsection, which is defined
for composite transition systems with multiplicity 2 can be
extended easily to this more general case.

Theorem 4.9:Given a set of labelsΣ and composite
transition systemsT1, T2, T

′
1 andT ′

2. Suppose that the tran-
sition systemsT1 and T ′

1 have observation spaceΠ1 and
multiplicity n1, while T2 andT ′

2 have observation spaceΠ2

and multiplicity n2.
(i) If T1 ¹ε1,δ1

T ′
1 andT2 ¹ε2,δ2

T ′
2, then for anyε ≥ 0,

T1 ‖ε T2 ¹ε+max(ε1,ε2),δ1+δ2
T ′

1 ‖ε+ε1+ε2
T ′

2. (27)

(ii) If T1 ≈ε1,δ1
T ′

1 andT2 ≈ε2,δ2
T ′

2, then for anyε ≥ 0,

T1 ‖ε T2 ≈ε+max(ε1,ε2),δ1+δ2
T ′

1 ‖ε+ε1+ε2
T ′

2. (28)
The compositional properties given in Theorem 4.9 is

illustrated in Figure 2.

V. CONCLUSIONS

The notion of approximate (bi)simulation developed by
Girard and Pappas [11], [12], [13] has developed as a useful
tool of abstraction of dynamical systems. The theory stems
from the idea of relaxing the requirement that an abstrac-
tion is exactly equal to the original system. In this paper,
we follow the same path by imposing even more relaxed
conditions on the approximate (bi)simulation. Namely, we
introduce a pseudometric on the set of labels and allow some
tolerance in the labels, when one system simulates another.
We show that this new notion of approximate (bi)simulation
is a generalization of the other one, in the sense that if we set
the tolerance in the label to zero, we recover all the existing
results.

Another notion that we introduce in this paper is that of
approximate synchronization. Approximate synchronization



is based on the idea of relaxing the requirements that when
two transition systems synchronize, they synchronize on the
same label. Instead, we allow them to synchronize on labels
that are close. We show that approximate (bi)simulation is
compositional with respect to approximate synchronization.

Having set up a theoretical framework, we set our next
goal at providing a computational framework for the ideas
that we discuss here. Approximate (bi)simulation of Girard
and Pappas has a nice computational framework, in the form
of bisimulation functions, to facilitate the constructionof
approximate (bi)simulation relations [12], [13], [17], [18].
We have generalized the notion of bisimulation function. We
now need to extend the computation machinery to cope with
the new notion.
Acknowledgement.The authors would like to thank Antoine
Girard for valuable discussion during the preparation of this
paper.
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