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Abstract—In this paper, we consider metric transition sys- paper, we start with the idea of approximate bisimulation
tems which are transition systems equipped with metrics of transition systems as developed recently in [11], [12],
for observation and synchronization labels. The existence of [13]. Transition systems is a convenient framework to use

metrics leads to the introduction of two new concepts, (i) . - .
(¢, 5)— approximate (bi)simulation of transition systems and because many interesting classes of dynamical systems can

(ii) approximate synchronization of transition systems. be embedded as transition systems, and abstraction can be
We show that the notion of (¢,§)— approximate studied as abstraction of the transition system [14], [5].
(bi)simulation can be thought of as a generalization or relax- In this paper, we extend the previous work by introducing

ation of the earlier work on é— approximate (bi)simulation . ; e
by Girard and Pappas. We demonstrate the link between a pseudo-metric on set of labels of the transition systems.

reachability verification and approximate (bi)simulation, and HaV'”Q a nOt'On of d'Sta”C? in the set of _Iab(?ls enables us
we also provide a characterization of (bi)simulation relations t0 define a notion ofipproximate synchronizatioroosely
using a tool similar to the (bi)simulation function. speaking, by approximate synchronization we mean allowing
Approximate synchronization can be thought of as a gen- systems to synchronize not only on the same label, but also
eralization of synchronization of transition systems in the with labels that are close. Approximate synchronization ca

usual sense. In fact, the usual synchronization and interleaving be th ht of laxati fth i f hronizati
synchronization are two special cases of the notion of approx- € thought of as a relaxation of the notion of synchronizatio

imate synchronization developed in this paper. Furthermore, in the usual sense.
we present a result on the compositional properties of the  Contrary toexactnotions of synchronization for traditional

approximate (bi)simulation with respect to the approximate transition systemsapproximatesynchronization is a much
synchronization. more natural and robust concept especially when different
. INTRODUCTION system need to synchronize over temporal or spatial vari-
bles where exact synchronization may be too restrictive
r not robust. For example, random communication delays
etween geographically distant subsystems requires amoti
hsynchronization that does not require strict simulthnei
'(I)l us, approximation in the synchronization can be related

System abstraction is traditionally associated with splsteto tolerance in timing. Similarly, in the area of multi-agen

equivalence, in the sense abstraction of a complex syste&fgmlrobl’ Ilf S?:tlal mformgtlo? aboutht he _ag(ta.nts IS cat[;d o8 d
amounts to constructing an equivalent system with less € 1abels, then approximate synchronization can be used as

complexity. The equivalence guarantees that the results fcompact and natural way of representing communication

analysis performed on the less complex system can be carri q cooperation) range.

over into the complex system. Language equivalence a g.n.tmsl gaper} wetf!rs;c eXt‘?t’.‘d the tnotlonbof_aﬁ[pprox[mate
bisimulation (and its variants) are two of the most commonl i)simulation of metric transition systems, by introchgia

used notion of system equivalence for systems abstracti ﬁeudometrlc on the set of Iabgls. We eIUC|d'ate the relation
[41, [5], [6], [7]. etween our work and an earlier work by Girard and Pap-

das [11], [12], and we also provide a way to characterize
roximate (bi)simulation relations by using an extemsio

complex systems. With abstraction, the complexity of th
systems (typically associated with the size of the stateegpa
can be decreased, resulting in lesser computational cost
the analysis [1], [2], [3].

System abstraction is an important tool for analyzin%

Requiring the abstraction to be equivalent to the origin
system is sometimes too restrictive. Researchers have b The (bisimulation functi We then introd th i
working to develop more relaxed abstraction theories th e (bi)simulation functions. We then introduce the aof

enable further model simplification. One of the ideas is t§! approximate synchronllzatllon apd present a result t_hat
relax the requirement that the abstraction is equivaletie¢o shows that approx[mate (b|)5|muIaF|on'|s compositionahwi
original system, and replace with that the abstraction Ig onespect to approximate synchronization. Even further, we
approximatelyequal to the original system (see, e.g. [8] [g]show thgfc this result also extends to t_he case _v_vhere clusters
[10], [11]). The key ingredient to these theories is a metrigf transition §ystems (called composite transition sysjem
that can quantify the distance between the system and e synchronized,

abstraction, and hence the quality of the abstraction. ik th The remaining of the paperis orgamzpd as fqllqws. Sec—
tion Il presents the extension of approximate (bi)simolati
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Section IV is devoted for introducing the idea of approx-

Definition 2.4: Given two transition systemsr;

imate synchronization and presenting its properties. Hef€);, <, —;, Q%,1L, (-),), i = 1,2. A relation R C Q1 x Q-
we also present the compositional properties of approxdmais a (¢, )— approximate bisimulation between?’; and 75,

(bi)simulation under approximate synchronization. Intiec

d,e > 0, if R is both a(e,d)— approximate simulation of

V we give some concluding remarks and possible futur@; by 7, and a(e,§)— approximate simulation of T5 by

research directions.

Il. METRIC TRANSITION SYSTEMS

7.
Corollary 2.5: Given two transition systemsT;
(Qi727_>iaQ?aH7<'>i)7 i = 172 Let R C Ql X QQ- For

In this section, we extend the idea of approximate simul@ny ' > ¢ > 0 ande’ > ¢ > 0 the following statements
tion and bisimulation, by introducing a pseudometric on th&old.

set of labels of the transition systems.

We define a transition system as a six tuple- (Q, %, —
,QV,TL, (-)), whereQ is the set of states}. is the set of
labels, —C Q x ¥ x Q is a set of transitionsR® is the

(i) If R is a(e,0)— approximate bisimulation betweeh
and T3 then it is also a(¢’,§)— approximate bisimulation
between; andT5.

(i) If R is a(e,d)— approximate bisimulation betweeR

set of initial states]I is the set of possible observations,and T then it is also a(e, é")— approximate bisimulation
() : Q — Il is the observation map. The transition systenetweenT; andT5.

is called ametric transition systerii the set of observations

IT and labels: are equipped with pseudometridgs anddxs
respectively.

Approximate simulation and bisimilarity between transi-
tion systems are characterized as follows.
Definition 2.6: Given two transition systemsT;

Notation 2.1: In this paper we shall use the following (@i, 2, =i, @7, 1L, (-),), i = 1,2. We say thatl> simulates

notations.

Ve > 0,0 €3, B(o):={0' € X |ds(o,0") <e},
Ve >0,z €Il, Bo(z):={2' €Il | du(z,2') <e},
Vg€ Q,8C%, Ug,5)={d€Q|3oeS,q%q}.
Definition 2.2: Given two transition systemsT;
(Qi, S, =4, QY 1L, (+),), i = 1,2. Arelation R C Q1 x Q2
is a(g,d)— approximate simulation of T by T5, §,e > 0,
if for any (q1,¢2) € R,
() dn({q1); +(g2)5) <6,
(i) For anya € %, ¢} € Q; such thaty; % ¢}, there exists
and’ € ¥ andg) € Q- such that

dZ(ava,) S €, q2 i) Qé7 (ql17QQ) eR.

Notice thate and ¢ represent the precision in the ap-y,
proximation in terms of the synchronization labels and thE

observations respectively. £0,0)—approximate simulation

relation is ad— approximate simulation in the sense of

[11], which requires exact synchronization. (8,0)— ap-
proximate simulation relation is a classical exact siniakat
relation with exact synchronization. Furthermore, théofw!

ing proposition reveals the partial ordering of approxienat

simulation relations.

Proposition 2.3: Given two transition systemsl;
(Qi72,—>i,Q?,H,<->i), 1 =1,2. Let R C Q1 X Q2. For
anyd > 4§ > 0 ande’ > ¢ > 0 the following statements
hold.

() If R is a(e,d)—approximate simulation df; by T, then
it is also a(¢’,6)— approximate simulation of; by Tb.
(i) If R is a(e, d)—approximate simulation df; by 75 then
it is also a(e, ¢’)— approximate simulation of; by T5.

A (g,0)—approximate bisimulation relation can be defined, 4 T

as a symmetric version of @&, §)—approximate simulation,
as follows.

T, with precision (e, ¢) if there existsR, a (¢, d)— approx-
imate simulation ofl; by T, such that for every) € @Y,
there exists &9 € Q9 such that(¢?, ¢8) € R. This relation
is denoted byl <. s Ts.

Definition 2.7: Given two transition systemsT;
(Qi, S, =4, QY 1L, (+),), i = 1,2. We say thatT} and T
are approximately bisimilar with precision (e, ) if there
existsR, a (e, §)— approximate bisimulation betwedn and
T», such that
(i) for every ¢ € @Y, there exists a)
(6),49) € R,

(i) for every ¢9 € @3, there exists a
(¢7,93) € R.

This relation is denoted by} ~. 5 T».
The concept ofs, §)— approximate bisimulation is illus-

€ @Y such that

€ @Y such that

.5, we can derive the following proposition.

Proposition 2.8: Given two transition systems, andT5.
For anyd’ > ¢ > 0 ande’ > ¢ > 0. the following statements
hold.

() If Th =5 To thenTy <. 5 Ts.
(II) If T 5575 Ts thenT1 ja,&’ Ts.
(lll) If T, Re,s Ty thenT el s T5.
(lV) If Ty Res T5 thenT Re s Ts.

For anye,§ > 0, the approximate bisimulation relation
R, IS clearly reflexive and symmetric, i.e. for any transition
systemsil; and T,

(reflexive) Ty ~. s T1.

(symmetric) If Th ~. s T», thenT; ~, 5 T}.

Another property of interest is the transitivity properfytioe
approximate simulation and bisimulation.

Proposition 2.9: Given three transition systems;, Tb
For anyd,6’ > 0 ande, e’ > 0. the following
statements hold.

() If Ty =515 andTy = 5 T3, thenTy =y 5460 T5.

1From this point on we assume that all transition systems arei(metr(”) If Ty Res 1o and T ~er s T, thenTy Reter 546 13

transition systems, hence we do not distinguish betweenntbenbtions

Proof: We only prove (i), since (ii) can be proven

ated in Figure 1. Based on Proposition 2.3 and Corollary



T I The relation between the reachable sets (of observations)
\ s[ ! \\ of the transition systems and the approximate (bi)simurtati
< J is summarized as follows.
N y Definition 2.10: Given a transition systerf = (Q, 3, —
L :\/ ,QY,TL, (-)), an observatiory € II belongs to the reachable
( \ RN set of the transition systerR(T) if there exists an initial
/ / \ 6] _/ ( > statexy € Q° and a trajectory starting from,
/ \T \ // A N2/ To > T S D g,
)Z VPR such that(z,,) = y.
‘ bservation map ( > Theorem 2.11:Given two transition system$; and 75,
w J NV the following relations hold.
/4 @ & & T, 5 (i) T1 2.5 T» for somee, § > 0 implies
i <.
Y1 es’gfI()TI)yzelflrész)dH (y17 y2) N 6 (4)

Fig. 1. An illustration of approximate (bi)simulation withbels between
two transition systemd’ and 7. The outputs of related states must be
within at mosté. The two transition systems do not have to synchronizejii) T =, 5 T5 for somee, d > 0 implies
with the same labels. Rather, the labels can be at magtart.

max sup inf  di(y1,y2),
<y1€R(T1)y2€R(T2) ( )

in an analogous manner. Suppose tfat <. 7> and
Ty <o T3, and Rq2 and Reg are the(e, §)— approxi- sup inf  dp(yi,y2) | <0. (5)
mate simulation of T; by Tb, and (¢/,¢')— approximate y2ER(To)¥1 ER(T1)

simulation of 75, by T; respectively. We shall prove that Proof: (i) We need to show that if3 =. ; 75 for some
g,0 > 0, then for anyy; € R(T1), there exists @, € R(1»)

Ri3 := Ri2 0 Ras, such thatdn(y1,y2) < 4. There exists a trajectory df}
H 0
= {(q1,43) | 3q2, (a1, 42) € Ruz, (2, 43) € Roz} (1) Starting fromay o € Q7

. . . . aq ao QAp,
isa(e+¢,0+46")— approximate simulation of T3 by T5. 1,0 = T1,1 — = Tin,

Take any(q1,q3) € Ras. First, we show that such that(r:..), — 1. Suppose thaR ¢ Q1 x Qs is a

dri({q1)y » (g3)g) < 6+ 6. (2) (g,6) -approximate simulation df; by T>. By the definition
of approximate simulation, we can infer that there exists a
By definition of R3, there exists &> € ()2 such that trajectory of7; starting from az; o € QY,
(q1,92) € R12 and(gq, q3) € Ra3. From there we can infer

’ ’ ’

that 2,0 3 T2,1 Z.on L2.n;
dn({g1), - (g2),) <6, (@13 22.5) € R-
dii((g2)s , (a3)3) < 0". Denote (z2.,), = yo. It follows from the definition of

Equation (2) follows because of the pseudometric prormrtieapp.mx'mate simulation thaiy (y:, y2) < .
o, (ii) Analogous to part (i). ]
Now we shall show that if; — ¢} for somes € ¥ and The aoplicati f imate (bi\simulati id
¢y € @1, then there exist’ € ¥ andg} € Q3 such that . pplication ol approximate (bi)simula lon as an ai
in safety verification of dynamical systems is presented
in [11], [12]. Given a dynamical system embedded as a
transition systenT’;, another dynamical system embedded as
By the existence of @, € @, as above, we can infer the a transition systenT} is constructed such thaf; <o s 7b.
existence of a, € Q2 ando” € ¥ such that The system corresponding with, is simpler, in the sense
of smaller state space. The reachable set’otan thus be
approximated with that of, with precisiond.
The introduction of a metric for the labels can be thought
However, this in turn implies the existence of/ac Q3 and of as a relaxation that allows for tighter bound in the

(91, q5) € Raz,q3 = ¢h,ds(0,0') <e+e'.  (3)

7"
o

(q/laqy S Ruﬂ}z — (]lg,dz((f, J//) <e.

o’ € ¥ such that approximation of the reachable set. This is illustratedhan t
o continuous time dynamical system
(45, 45) € Raz,q3 — ¢5,ds(0’,0") < €. d
. . . - E Zf(x,u),y:h(x), (6)
Again, (3) follows immediately from the definition R 3 0 .
and the pseudometric properties. | reX,2(0) e X% ueld,ycy CR™. (7)



This system can be embedded into a transition system Definition 3.3: Given two transition systemsl; =
(Q,%,—,Q%IL, (-), whereQ = X, ¥ =Ry, Q° = X%, (Q:, 3, —4, QY 1L (),), i = 1,2. Afunction ¢ : Q1 x Q2 —
II=Y, (z) = h(z). R4 U {oo} is ane— bisimulation function betweeff; and
T, if it is both ane - simulation function ofl; by T, and an
¢ - simulation function ofl; by 7. That is, for anyy; € Q4

such thatr = 2/ if and only if there existz, € X° and @ndga € Qs

—C R" xRy x R",

uw : [0,7] — U such that the continuous solution to the &g, q2) > du({q)y , (g2)s) (12)
differential equation N - ’
a . d(q1,q2) > sup inf o(q1,45), (13)
T 015¢, 02"
. :f(xau)vx(o):x() (8) ! . 2
dt d(q1,q2) > sup  inf (g}, q5). (14)

ofi o ; T 2>ga =g,
fsat'Sf'est(T) - Alternat|vely_ statedz = & if and_ only The relation between (bi)simulatilon functions and approx-
if there is an input that can drive the system starting at th

- A . . fhate (bi)simulation can be summarized in the following
initial statex to the stater’ in 7 time unit. The set of labels

. , . . theorems.
and .ot.)serv.at|on§R+ anqy < Rm are eqylpped W'th.t.he Theorem 3.4:Given two transition systenig; and 7. If
Euclidian dlstanceﬂ-H. With this interpretation of transition & is ane— simulation function off} by T, for somes > 0,
system, th_e foIIOW|ng_|mpI|cat|on car_1_be proven. then for anys > 0, its 5— level set,
Proposition 2.12:Given two transition system§; and
Ts, the following relations hold. Rs(¢) == {(q1,42) | ¢(q1,q2) <0},

() Ty 2oc g T, for somed > 0 if and only if is a (e, 0)— approximate simulation of T} by Tb.

sup inf  du(y1,y2) < 0. (9) Proof: Take any(qi,q2) € Rs(¢), by (11a) we have

Y1 E€R(T1)Y2ER(T2) that,
d((q1)y » (q2)5) < 0. (15)

For anys € ¥ such thaty; % ¢/, (11b) implies the existence
of ¢4 € Q2 ando’ € ¥ such that

(i) Th ~oo,5 T> for somed > 0 if and only if

max sup inf  dn(y1,y2),
y1 €R(Ty)¥2€R(T2) Y ds(o,0') <e
29 ) = <

sup  inf  dp(yr,y) | < 0. (10) o(d1,93) < 0.
Y2 ER(T)Y1ER(TY) heref ; R
Therefore, by relaxing the requirement on the labels, wenerefore(di, @) € Rs(¢). u

can get a result stronger than Theorem 2.11. A different Theorem 3.5:Given two transition systentig, andTs. If

treatment of a similar idea is presented in [15]. ¢ is ane— bisimulation function betweed’, and T3, for
somee > 0, then for anys > 0, its 0— level set,

Rs(¢) == {(q1,q2) | #(q1,q2) < 0},
a (e, d)— approximate bisimulation betweenT; andT5.

I1l. EXTENSION OF THE(BI)SIMULATION FUNCTIONS

In this section we discuss the extension of the concept

of (bi)simulation functions [11], to deal with metrics on IS
synchronization labels. Proof: Analogous to that of Theorem 3.4. ]

Definition 3.1: Given two transition systemsl; — Generally speaking, the characterization ofzansimula-
e QOI H ()).i— 1.2 Afunctiong : O XéQ _, tion function is similar to that of a simulation function whe

R4 U {oo} is ane - simulation function ofTy by T if for there is nondeterminism in the system.

any g € Q; andgs € @, V. APPROXIMATE SYNCHRONIZATION

&(q1,q2) > du({q); » (g2)s), (11a) Typically, synchronizatiqn qf transition systems is fptma
. ;o ized by (exact) synchronization of the labels. In this sec-
a1, 42) 2 Sip, lif ,d)(q“qQ)' (11b) tion, we introduce the idea of approximate synchronization
Notice that ane—simulation function can be thought of Loosely speaking, the idea is to let two transition systems
as a relaxed version of bisimulation function in the sensgynchronize using labels that are close, but not necegsaril
of [11]. In order the match a transition @f,, 7> does not gqual. Closeness is defined in the sense of the a pseudometric
necessarily perform a transition with the same label. Rathdn the set of labels.
T, can choose any move, as long as its label is at mosta  Approximate synchronization of transition systems
apart from that ofl}. A bisimulation function in the sense
of [11] is a0— simulation function.
Proposition 3.2: Given two transition systems, andT5.
If ¢ is ane—simulation function ofl; by 75, for somes > 0,
then it is also are’—simulation function ofT; by T5, for
anye’ >e¢>0. T:=T | Ty, (16)

Definition 4.1: Given two transition systemsl; =
(Qi, S, —:,QY,11;,(-),), i = 1,2. The approximate syn-
chronization operator||., £ > 0, acting on the two systems
results in another transition system



whereT = (Q1 x Q2,% x B, —, QY x Q9,II; x Iy, (-)). same set of labels. If 71 <., 5, T| andT =.,.s, Ts, then
The transition relation— is such that(q:,q2) 2% (¢}, q,) foranye =0,

iff q1 £>1 qlla q2 LQ ql2a dE (Ua OJ) <e. The observation map Tl ||5 T2 —e+4max(e1,62),01+02 Tl ||E+E1+62 T2 (21)
(-) is defined as Proof: Denote
((q1,92)) == ({q1)1 + (@2)2)- (7) T:=T ||c To,T" :=T! ||oqe,1e, Th- (22)

Notice that the composite transition systdm= T} || T»
is quite different from the transition systeris and 75, in ~ SinceTi =, 5, 17 andT} =, 5, T3, there exist appropriate
the following sense: approximate simulation relatior®; C @1 x Q] andRy C
. The observation space @ is a product of those of; ~ ¥2 * Q3 (see Definition 2.6). We defin& C (Q1 x Q2) x
and T, (Q] x Q%) as follows.

. ZES;et of labels of” is also a product of those df; (g1, ), (¢, b)) € R =
2- / /
. . . q1,q1) € R1 and(qz2,q3) € Ro.
We need to define a notion of pseudometric for an obser- (1) ! (@2:2) ?
vation space that is a product of two observation spaces, alWé are going to prove thak is a (¢ + max(e1,€2),01 +
similarly for the set of labels. d2)— approximate simulation ofT" by T'. Take any
Definition 4.2: The observation spadé, xI1, is equipped ((¢1,42), (¢}, ¢5)) € R.
with the following pseudometric.
9P din (({a1)1 5 {a2)s) > (1) + {@8)2)) =

dit (1, m2), (1, m3)) := dimy (w1, ™) + diry (w2, m3). (18) = di, ({@1)y (@i )) + din ({an)s » g )o)

The set of labelst x ¥ is equipped with the following <01+ 0o (23)

pseudometric. The inequality is due to the fact thé&;, ¢}) € R;, i =1, 2.

dsz ((01,02), (0],0%)) :== max max ds:(o,05).  (19) For anya, 3 € ¥ and (g1, G2) € Q1 x Q2 such that
J
Approximate synchronlzauon can be thought of as a

ds (0 0) < <. (a1.02) T (@.8)

relaxed version of the exact synchronization. Exact symchr
nization is a special case of approximate synchronizdfion we need to show that there exist, 3’ € ¥ and (¢, ) €
namely where = 0. Obviously, the larger the tolerance) ( Q) x Q) such that
in the synchronization is, the more flexible the two systems .
can evolve with respect to each other. If we assume that ds(a/,3') <e+e1 +e2,(q), q5) %2, (G, G5),
the transition systems have stutter transition [16], thseca ds2 ((a, B), (&, 8)) < € + max(ey, €2),
whene = oo can be thought of as the situation when the = =\ et
executions of the two transition systems are interleaviing (@1, %), (01, %)) € R-
executions can interleave because one transition system ®ecause(q;, q}) € Ri, i = 1,2, we know that there exist
always synchronize with the stutter transition of the ather o/, 3’ € ¥ and (¢}, ) € Q) x Q) such that

The fact that defined notion of approximate synchroniza-

tion is a relaxation of the traditional notion of synchramiz ds (o, ') <er,qy =1 @, (@1, d)) € Ra,
tion is reflected in the following proposition. y P
Proposition 4.3:Given two transition systemg; = ds(B,6') < 2,42 =11 G2, (@2, G2) € Ra.

(Qi, X, —4, Q) IL (),), i = 1,2. For anye,e’ > 0, the |t follows immediately that

following holds. o
((q1,G2), (41, d3)) € R.
11 le To 20,0 T1 |leter To. (20)

Proof: The identity relation ifQ; x Q2) x (Q1 x Q2)  ¢From the triangular inequality, we obtain
is a (0,0)— approximate simulation relation & by 77. & P , ,
This proposition tells us that a synchronization with highe de(o, ') < ds(a, B) + dz(e, o) + ds(B, 5),
tolerance always simulates one with less tolerance. Seterte,
It is already known that the notion of approximate
(bi)simulation has a compositional property [11] with resp and therefore(q;, ¢3) %0 (@, ). Furthermore,

to exact synchronization. In the following we shall showttha max  max dx(i,j) < & + max(er, £2).

the extended notion of approximate (bi)simulation that we i€{a,8} je{a’,8'}
present in this paper also has a compositional property withonce
respect to approximate synchronization. ds2 (e, 8) , (@, 8)) < max(e1, )

Theorem 4.4:Consider transition systenig,, 7>, 7] and
T5. Suppose that the transition systefis and 7] have Finally, we need to show that for anyq!,q9) €
observation spacél;, while 7, and 75 have observation Q9 x QY there exists(q)’,¢)’) € QP x Q% such that
spacell,. Moreover we assume that all of them share th¢(q?, ¢9), (¢1°,¢5)) € R. This fact is a direct consequence



of R; and R, being the approximate simulation relations
that definely <., s 77 andTs <.,.5, T5. [ ]

This result can be extended to approximate bisimulation,
as follows.

Theorem 4.5:Given transition systems;, 7>, 7] andT3.
Suppose that the transition systeffisand 7} have observa-
tion spacell;, while T, and T have observation spadé,.
Moreover we assume that all of them share the same set of
labelsX. If Ty ~., 5, 17 and T, =~., s, T3, then for any
e>0,

T || T2 Retmax(er,e2),01+02 Tll llete1+es T2/~ (24)
Proof: Analogous to that of Theorem 4.4. ]

Notice that where = ¢; = e = 0, Theorem 4.4 and 4.5
Fig. 2. Compositional properties of approximate (bi)simolatiEach el-

are reduced to the already known compositionality properi lipse symbolizes approximate synchronization. The arrodi&atie approxi-

of the approximate (bi)simulation relation in [11]. mate (bi)simulation. The relation between the precisionsiefapproximate
(bi)simulations is given in Theorem 4.9 and not displayedeher

B. Composite transition systems

As explained in the previous subsection, the result of
approximately synchronizing two transition systems is a Notice that composite transition systems are intrinsjcall
kind of composite transition systems, whose transitiors atransition systems with an additional assumption in thecstr
labelled by a pair of labels. It is quite straightforwardture of their sets of labels. Two composite transition syste
to generalize this idea, for example if we want to havevith the same multiplicity share the same set of labels,
several transition systems synchronizing. In this sulm®ct and hence the concept of approximate (bi)simulation applie
we formalize this idea and make it possible to discus® them. The compositional properties of the approximate
approximate synchronization of two (or more) composité¢bi)simulation in the previous subsection, which is defined
transition systems. for composite transition systems with multiplicity 2 can be

Definition 4.6: Given a set of labels¥X, a composite extended easily to this more general case.
transition systemT = (Q, X", —, Q°,1I, (-)) is a transition Theorem 4.9:Given a set of labelsS and composite
system with a set of labels™, 1 < n € N. The numbem is  transition systemd?,T,, 7] andT5. Suppose that the tran-
called themultiplicity of the composite transition systems. sition systemsT; and 7] have observation spadd; and

Before we proceed to define approximate synchronizatiamultiplicity n;, while 7, and T} have observation spadé,
of composite transition systems (possibly with differentlim and multiplicity ns.
tiplicities), we need to define a notion of distance betwee() If 77 <., 5, 77 andTs <., 5, T3, then for anys > 0,
elements in2™ and X, wheren andm are not necessarily
equal.

Definition 4.7: Giveno € ¥" andw € X, we define the (i) If T ~., 5, 7] andT; ~., s, T3, then for anys > 0,
distance between andw as

T ||s 15 je+max(51,82),51+52 Tll ||€+61+62 TQ/- (27)

T ||a Ty Retmax(er,e2),61+02 Tl/ ||E+E1+62 T2/ (28)
ds+(0,w) = ds+(w,0) ;= max max dx(o;,w;). The compositional properties given in Theorem 4.9 is
=1,...,nj=1,....m . . .
Definition 4.8: Given two composite transition systems'"ustrated in Figure 2.
T; = (Qs, X", —, QY 1L;, (-),), i = 1,2. The approximate V. CONCLUSIONS

synchronization operator|., ¢ > 0, acting on the two com-  The notion of approximate (bi)simulation developed by
posite transition systems yield another composite tr@msit ;o4 and Pappas [11], [12], [13] has developed as a useful

system tool of abstraction of dynamical systems. The theory stems
T:="T | Tz, (25)  from the idea of relaxing the requirement that an abstrac-

whereT = (Q x Qa, 5™+, — Q9 x QY,1I; x I, (-)). tion is exactly equal to the or_lgmallsystem. In this paper,
0.0 we follow the same path by imposing even more relaxed

3 T o
The transition relatior- is such thalg1, ¢2) = (d1,42) it ¢onditions on the approximate (bi)simulation. Namely, we

@1 21 4}, g2 52 gb, ds+(0,0’) < e. The observation map introduce a pseudometric on the set of labels and allow some

(-) is defined as tolerance in the labels, when one system simulates another.
o We show that this new notion of approximate (bi)simulation
(g1, 22)) = ((q)1+ (g2)2)- @6) isa generalization of the other one, in the sense that if we se
The new observation spadé = II; x II, is equipped with the tolerance in the label to zero, we recover all the exjstin
the pseudometric results.

., . , Another notion that we introduce in this paper is that of
dr (1, 72), (7, 73)) = dun, (w1, ™) + di, (2, 7). approximate synchronization. Approximate synchrongati



is based on the idea of relaxing the requirements that when
two transition systems synchronize, they synchronize en th
same label. Instead, we allow them to synchronize on labels
that are close. We show that approximate (bi)simulation is
compositional with respect to approximate synchronizatio
Having set up a theoretical framework, we set our next
goal at providing a computational framework for the ideas
that we discuss here. Approximate (bi)simulation of Girard
and Pappas has a nice computational framework, in the form
of bisimulation functions, to facilitate the constructiaf
approximate (bi)simulation relations [12], [13], [17],9]L
We have generalized the notion of bisimulation function. We
now need to extend the computation machinery to cope with
the new notion.
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