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Abstract: We study the problem of remote state estimation, in the presence of an eavesdropper.
An authorized user estimates the state of a linear plant, based on the data received from a sensor,
while the data may also be intercepted by the eavesdropper. To maintain confidentiality with
respect to state, we introduce a novel control-theoretic definition of perfect secrecy requiring
that the user’s expected error remains bounded while the eavesdropper’s expected error grows
unbounded. We propose a secrecy mechanism which guarantees perfect secrecy by randomly
withholding sensor information, under the condition that the user’s packet reception rate is
larger than the eavesdropper’s interception rate. Given this mechanism, we also explore the
tradeoff between user’s utility and confidentiality with respect to the eavesdropper, via an
optimization problem. Finally, some examples are studied to provide insights about this tradeoff.
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1. INTRODUCTION

The recent emergence of the Internet of Things as a
collection of wirelessly connected sensor and actuator
devices has given rise to significant cyber-security con-
cerns (Cárdenas et al., 2008; Sandberg et al., 2015). Re-
search efforts have targeted, for example, denial-of-service
attacks (Amin et al., 2009; Gupta et al., 2010), privacy
issues (Le Ny and Pappas, 2014), as well as data integrity
of compromised sensors (Fawzi et al., 2014; Mo et al.,
2014; Pajic et al., 2014). However, the broadcast nature
of the wireless medium opens up further vulnerabilities in
such connected systems (Zou et al., 2016). A fundamental
vulnerability is confidentiality against eavesdroppers who
may intercept the transmitted information. This becomes
particularly crucial for sensor or actuator data, which con-
vey critical information about the physical system state.

Encryption and cryptography-based tools are commonly
employed for confidential communication (Katz and Lin-
dell, 2014), dating back to the work of (Shannon, 1949).
These approaches rely on encrypting communication mes-
sages with public or private keys, in order to achieve confi-
dentiality against computationally limited eavesdroppers.
These are generic tools, typically employed at intermediate
layers of the communication protocol stack, and they do
not take into account the characteristics of the application
for which confidentiality is required, or the characteristics
of the physical layer used for message communication, e.g.,
the wireless medium.

Additionally, it is possible to exploit the physical layer in
order to achieve confidentiality, usually termed secrecy in
this context (Wyner, 1975; Liang et al., 2008; Oggier and
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Hassibi, 2011; Regalia et al., 2015). This approach models
the eavesdropper as overhearing the communication over
a channel that is degraded compared to the legitimate
channel. This channel disparity may be exploited using
information-theoretic tools to achieve a positive commu-
nication rate with secrecy. This information-theoretic ap-
proach may be applied to problems in remote estimation
and control, as discussed in preliminary works (Li et al.,
2011; Wiese et al., 2016). However, the construction of
practical secrecy codes is still an active area of investiga-
tion (Regalia et al., 2015).

In this paper, we take an alternative approach by intro-
ducing a novel control-theoretic definition of secrecy and
by designing simple mechanisms that meet this definition.
More specifically, we consider a sensor transmitting the
outputs of an unstable linear dynamical system to a le-
gitimate user, while an eavesdropper tries to intercept the
sent messages compromising confidentiality. Communica-
tion follows the packet-based paradigm commonly used in
networked control systems (Sinopoli et al., 2004; Hespanha
et al., 2007), where the user and the eavesdropper respec-
tively receive and intercept packets with different success
rates. Our definition of perfect secrecy requires that any
state estimate devised by the eavesdropper, suffers from an
unbounded expected error in the limit, while the legitimate
user still tracks the state with a bounded error (Section 2).

In Section 3, we show that perfect secrecy is possible as
long as the packet success rate of the user is larger than
the packet interception rate of the eavesdropper (Theo-
rem 1). This is achieved by a simple mechanism, which
randomly withholds information with the appropriate rate
at the sensor. Then, estimation at both the user and the
eavesdropper, follows two respective intermittent Kalman
filter problems (Sinopoli et al., 2004). To achieve per-
fect secrecy, we exploit both the unstable dynamics and

Preprints of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright by the
International Federation of Automatic Control (IFAC)

8715



the inferiority of the eavesdropper’s rate. The latter is
similar in spirit to the degraded channel assumption in
information-theoretic approaches (Regalia et al., 2015).
Our approach differs by explicitly considering a control-
theoretic definition of secrecy and by subsequently employ-
ing control-theoretic tools. Furthermore, our packet-based
communication model yields a simple secrecy mechanism,
in contrast to the problem of developing appropriate cod-
ing in, e.g., Li et al. (2011); Wiese et al. (2016).

In Section 4, we relax the perfect secrecy requirement, by
seeking to achieve the minimum estimation error at the
user, as long as the eavesdropper’s error is larger than a
desired lower bound. Due to the lack of analytical expres-
sions for the intermittent Kalman filter error, we relax the
problem by replacing the errors with known upper and
lower bounds. The resulting optimization problem can be
solved efficiently using bisection, and can be used as a tool
for approximate, yet quantitative, analysis of the tradeoff
between secrecy and utility. In Section 5, we illustrate this
analysis in a scalar system example, which reveals how the
parameters of the channel influence this tradeoff. We also
present numerical results, which demonstrate the effect of
employing the proposed secrecy mechanism to a second
order system. We conclude with remarks in Section 6.

After this paper was submitted, a paper was written on
a similar setting (Leong et al., 2017). The approach is
different than ours since it utilizes acknowledgment signals
from the user back to the sensor. In our paper, we assume
that acknowledgments are not available.

2. PROBLEM FORMULATION

The considered remote estimation architecture is shown
in Figure 1 and consists of a sensor observing a dynam-
ical system, a legitimate user, and an eavesdropper. We
consider the following linear dynamical system:

x (k + 1) = Ax (k) + w (k)

y (k) = Cx (k) + v (k)
(1)

where x (k) ∈ Rn is the state, y (k) ∈ Rm is the output
and k ∈ N is the (discrete) time. To have a well posed
estimation problem, we assume that (A,C) is detectable.
Signals w (k) ∈ Rn and v (k) ∈ Rm are the process
and measurement noise respectively. They are modeled as
independent Gaussian random variables with zero mean
and covariance matrices Q and R respectively. The initial
state x0 is also a Gaussian random variable with zero
mean and covariance Σ0. Covariance matrices R, Q, Σ0 are
assumed to be positive definite. In more compact notation
R,Q,Σ0 � 0, where � (�) denotes comparison in the
positive definite (semidefinite) cone.

We consider an unstable system, i.e., its spectral radius
is ρ(A) = maxi|λi(A)|> 1. From a security point of
view, the problem is more interesting when the system is
unstable, as otherwise the eavesdropper can always predict
that a stable system is close to equilibrium without even
eavesdropping.

The sensor communicates over a channel with two out-
puts/receivers as shown in Figure 1. The input to the
channel is denoted by ŷ (k). The first output, denoted
by ŷ1 (k), is the authorized one to the user, while the
second, denoted by ŷ2 (k), is the unauthorized one to the
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Fig. 1. A sensor collects the output y (k) of the dynamical
system (1). Then, it produces a distorted version ŷ (k)
of the output, and sends it to the channel. The user
and the eavesdropper receive the distorted output
with probability p1 and p2 respectively, and compute
the minimum square error estimates x̂1 (k) and x̂2 (k).

eavesdropper. The communication is organized in packets,
which consist of sufficiently large number of bits to neglect
quantization errors (Sinopoli et al., 2004; Hespanha et al.,
2007; Gatsis et al., 2014).

Communication with the user is unreliable, i.e., may un-
dergo packet drops. Additionally, communication is not
secure against the eavesdropper, i.e., the latter may in-
tercept transmitted packets. Packet drops and packet in-
terceptions are modeled as independent and identically
distributed (i.i.d.) over time and across outputs – see
Remark 1 for further discussion on this model. In par-
ticular, we denote by p1 the probability that a packet of
the authorized output is received by the user. Similarly, p2

is the probability that a packet of the unauthorized output
is intercepted. Thus, the channel model is the following:

ŷi (k) =

{
ŷ(k), with prob. pi
ε, with prob. 1− pi

(2)

for i = 1, 2, where symbol ε, is used to represent the “no
information” outcome.

Our goal is to design a secrecy mechanism at the sensor,
so that communication over the channel conveys sufficient
plant state information to the user, but limited state
information to the eavesdropper. In particular, the sensor
transmits a distorted version ŷ(k) ∈ Rm ∪ {ε} of the
output y (k) of the system (1) at each time step k over
the channel. The symbol ε indicates that no information is
sent. The secrecy mechanism dictates how ŷ(k) is selected,
possibly randomly, given all the available information at
the sensor at time k, i.e. past measurements y (t), t ≤ k
and past messages ŷ(t), t < k. The mechanism does not
know the success of previous packets (values of ŷi (k)); no
acknowledgment from the user is assumed.

In this architecture, all system and noise parameters
A,C,Q, R,Σ0 as well as the probabilities p1, p2 are
assumed to be public knowledge, available to all involved
entities, i.e., the sensor, the user, and the eavesdropper
(see also Remark 2). Moreover, both the user and the
eavesdropper know how the mechanism works. Under
those assumptions, both the user and the eavesdropper
use their received information to obtain a mean square
error estimate of the system state. Let us denote by x̂i(k)
the mean square error estimate at the user (i = 1) and the
eavesdropper (i = 2), defined as:

x̂i (k) = E
{
x (k) |ŷi,k

}
(3)
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where ŷi,k = (ŷi (0) , . . . , ŷi (k)). The corresponding esti-
mation error covariance is given by

Pi(k|k) = E
{

(x (k)− x̂i (k)) (x (k)− x̂i (k))
ᵀ |ŷi,k

}
(4)

We also define the covariance of the prediction error as

Pi (k + 1) = APi (k|k)Aᵀ +Q (5)

with Pi (0) = Σ0 at time k = 0. Throughout this work,
we quantify the uncertainty about the state using the
expected value of the prediction error.

We are now ready to introduce our notion of secrecy,
requiring that the eavesdropper’s uncertainty grows un-
bounded, whereas the user’s uncertainty remains bounded.
We term this perfect expected secrecy.

Definition 1. (Perfect Expected Secrecy). Given the sys-
tem (1) and the channel model (2), we say that a secrecy
mechanism achieves perfect expected secrecy if and only
if, for any initial condition Σ0 � 0, both of the following
conditions hold:

lim
k→∞

trE {P2 (k)} =∞ (6)

lim sup
k→∞

trE {P1 (k)} <∞ (7)

where tr is the trace operator. �

This notion of secrecy is asymptotic; the eavesdropper can
maintain a trivial open loop estimate x̂2(k) = 0 that has
unbounded but finite expected prediction error at any
time step k. We also note that the secrecy constraints
are required in expectation, not almost surely. By our
model, there is always a non-zero probability event that
the eavesdropper successfully intercepts a long sequence of
messages and intuitively maintains a good state estimate.

To have a well-posed problem, we assume that the user has
bounded uncertainty under nominal system operation, i.e.
when there are no secrecy concerns and the sensor sends
all output measurements.

Assumption 1. If the mechanism ŷ (k) = y (k) is employed
for all k ≥ 0, then the user’s expected error is bounded

lim sup
k→∞

trE {P1 (k)} <∞ (8)

for any initial condition Σ0 � 0.

The goal of the following section is to propose a simple
secrecy mechanism that achieves perfect expected secrecy
exploiting the channel model and the system dynamics.
Later on, in Section 4 we explore the tradeoff between
secrecy against the eavesdropper and utility to the user.

Remark 1. Modeling the user reception as an i.i.d. se-
quence implies a lossy memoryless channel, commonly
assumed in networked control systems (Hespanha et al.,
2007). The assumption that packet interception at the
eavesdropper is also i.i.d. is novel, and can be similarly
thought to model a lossy memoryless channel. In prac-
tical scenarios the eavesdropper cannot perfectly inter-
cept all messages, e.g., it overhears the communication
from a distance. Randomness in the interception may be
attributed to random varying channel conditions of the
wireless medium. �
Remark 2. The assumption that the system designer
knows exactly the eavesdropper’s channel model is com-
mon in formulations of physical layer security problems
(Regalia et al., 2015). In our case, knowing the packet

interception rate p2 (or some upper bound), is less restric-
tive than knowing the exact eavesdropper’s channel model.
Alternatively, the value p2 can be thought of as a level of
confidence the system designer has on the ability of an
eavesdropper to intercept the messages or not. �

3. PERFECT EXPECTED SECRECY

In this section, we explore sufficient conditions, under
which, we can achieve perfect expected secrecy. In par-
ticular, we propose a simple mechanism, which consists of
flipping a coin with success probability p at each time k to
decide whether to transmit the sensor’s output measure-
ment over the communication channel. If sent, and if the
respective packet is not dropped, it also reaches the user
and/or the eavesdropper. With probability 1 − p, on the
other hand, no message is sent, hence, neither the user nor
the eavesdropper receive any information. Intuitively, the
proposed mechanism tries to achieve secrecy by randomly
withholding sensor information. By selecting this proba-
bility p, we can control, to some extent, the amount of the
information availability in both channel outputs, though
not independently. Formally, the secrecy mechanism has
the following form:

ŷ (k) =

{
y(k) with prob. p

ε with prob. 1− p , ∀k ≥ 0. (9)

With no acknowledgments available, the mechanism’s de-
cisions (9) are independent of the packet drops in the
channel.

The next theorem states that a sufficient condition for
perfect expected secrecy, is that the authorized output of
the channel is more reliable than the unauthorized one, i.e.
p1 > p2. If this condition holds, then we can use the secrecy
mechanism (9) in order to satisfy (6), (7), by carefully
selecting values for the probability p.

Theorem 1. (Conditions for Perfect Secrecy). Consider
system (1) and the channel model (2). Under Assump-
tion 1, perfect expected secrecy is achieved within the
family of mechanisms (9) if and only if

p1 > p2. (10)

In particular, there exists a probability pc ∈ [0, 1) such
that all probabilities p satisfying

pc
p1

< p ≤ min

{
pc
p2
, 1

}
(11)

are exactly those, which guarantee perfect expected se-
crecy. �

The condition p1 > p2 is a reasonable requirement for
secrecy in many cases of practical interest. For example, as
mentioned in Remark 1, when the eavesdropper intercepts
the communication from some distance while the user is
physically closer to the sensor, the user experiences better
reception.

In the rest of this section, we present the proof of The-
orem 1 and we characterize the probability pc. Due to
the channel model (2) and the mechanism (9), at each
time k, the user receives y (k) with probability p̂1 = pp1,
and gets no information with probability 1− p̂1. Similarly,
the eavesdropper receives y (k) with probability p̂2 = pp2,
and no information with probability 1 − p̂2. Hence, the
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estimation problems of the user and the eavesdropper, are
actually two separate estimation problems with intermit-
tent observations (Sinopoli et al., 2004). Let γi (k) = 1
when ŷi (k) 6= ε and γi (k) = 0, when ŷi (k) = ε. Then,
the optimal estimates (3) follow the expressions for the
intermittent Kalman filter given by:

x̂i (k + 1) = Ax̂i (k) + γi (k + 1)Ki (k + 1)

× (y (k + 1)− CAx̂i (k))
(12)

for i = 1, 2, where Ki (k) = Pi (k)Cᵀ (CPi (k)Cᵀ +R)
−1

is the standard Kalman filter gain matrix. The prediction
error (5) evolves recursively as:

Pi (k + 1) = gγi(k) (Pi (k)) (13)

where the function g is defined as

gλ (X) = AXAᵀ +Q

− λAXCᵀ(CXCᵀ +R)
−1
CXAᵀ (14)

for any λ ∈ [0, 1] and any X � 0 in Rn×n. Notice that
in contrast to the classical Kalman filter, here Pi (k) is
stochastic and depends on the random sequence γi (k) of
successful receptions.

The estimation performance with intermittent observa-
tions varies with the probability of correct packet recep-
tion, in our case either p̂1 or p̂2. Specifically, there exists
a critical probability pc, which determines a kind of phase
transition for the evolution of the expected prediction error
covariance matrix E {Pi (k)}. If p̂i > pc, then the expected
error covariance matrix is bounded. On the other hand,
if p̂i ≤ pc then the expected error is unbounded. The
following lemma extends results of (Sinopoli et al., 2004)
in our setup – see Remark 3 .

Lemma 2. Given the system (1) and the secrecy mecha-
nism (9), there exists a critical probability pc ∈ [0, 1) such
that:

lim
k→∞

trE {Pi (k)} =∞ if p̂i ≤ pc, ∀Σ0 � 0 (15)

sup
k≥0

trE {Pi (k)} ≤MΣ0 , if p̂i > pc, ∀Σ0 � 0 (16)

where i = 1, 2 and MΣ0
is a positive constant, depending

on the initial covariance Σ0. �

Proof. The proof is included in the Appendix.

Now we can take advantage of the phase transition ac-
cording to Lemma 2 to chose mechanism (9) for per-
fect secrecy, and thus prove Theorem 1. First, we select
p to be small enough so that the eavesdropper’s error
trE {P2 (k)} grows unbounded, so that condition (6) of
perfect expected secrecy is satisfied. According to (15) in
Lemma 2, this is guaranteed by selecting p̂2 = pp2 ≤ pc.
On the other hand, p should not be too small, so that
the user’s error trE {P1 (k)} stays bounded and condition
(7) of perfect expected secrecy is satisfied. To achieve
this, from condition (16) of Lemma 2, we could select
p̂1 = pp1 > pc. Combining both conditions, and due to
the fact that p ∈ [0, 1], it is sufficient select p within the
interval pc/p1 < p ≤ min {pc/p2, 1}. What remains to
show is that this interval is nonempty. By the condition
p2 < p1, we obtain that pc/p1 < pc/p2. It remains to
argue that also pc/p1 < 1. By Assumption 1, the user’s
error is finite under no secrecy mechanism – in our case
when p = 1. By (16) in Lemma 2, this can occur only if
p1 > pc. This completes the sufficiency part of Theorem 1.

Now let us argue about the necessity part of Theorem 1.
Both conditions pp2 ≤ pc < pp1 are necessary within the
family of mechanisms (9). If pp2 > pc or pp1 ≤ pc, then one
of the conditions of perfect expected secrecy is violated,
for according to Lemma 2 either the eavesdropper’s error
is bounded or the user’s error grows unbounded. Hence,
condition p2 < p1 is necessary within the family of
mechanisms (9), which completes the proof of Theorem 1.

Theorem 1 describes that it is possible to achieve per-
fect secrecy by selecting the probability p of our mech-
anism to lie within a specific interval, in particular
(pc/p1,min {pc/p2, 1}]. However, this approach might still
not be constructive. Computing the critical probability
value pc is hard in general, apart from some special cases
(Plarre and Bullo, 2009; Mo and Sinopoli, 2008). In the
following section, we explore the tradeoff between secrecy
and utility via an optimization framework, and by this we
also obtain computationally efficient methods to tune the
probability p of our secrecy mechanism.

Remark 3. The presence of the eavesdropper makes the
problem different than the one presented in Sinopoli et al.
(2004). The main goal in the analysis of the intermittent
Kalman filter, has been to guarantee bounded error for a
user. In contrast, in our work we also require unbounded
error for the eavesdropper. Lemma 2 is an extension, as it
sheds more light to the unboundedness case. In Sinopoli
et al. (2004), it was only shown that unboundedness occurs
for some Σ0 � 0, while, here, we prove that it occurs for
all Σ0 � 0.

4. TRADEOFF BETWEEN SECRECY AND UTILITY

The notion of perfect secrecy, according to Definition 1,
requires infinite estimation error at the eavesdropper. This
might be too conservative in practice. At the same time,
the definition requires that the legitimate user has a
bounded estimation error, but this might be impractically
large sometimes. An apparent tradeoff arises between the
requirement for secrecy and the utility to the user. In this
section, we seek to explore this tradeoff via an optimization
framework.

More specifically, consider our secrecy mechanism (9). If
the sensor sends measurements more frequently, by in-
creasing the probability p, the user maintains a better state
estimate. At the same time, however, the eavesdropper is
able to intercept more messages, hence, the level of secrecy
declines. Conversely, secrecy is reinforced and the user’s
error deteriorates if the sensor withholds information at
a higher rate. We are interested, then, in designing our
mechanism (9) to minimize the error at the user, as long
as the eavesdropper error remains larger than some desired
bound. This is an optimization problem of the form

minimize
p∈[0,1]

lim sup
k→∞

tr (E {P1 (k)})

subject to lim inf
k→∞

tr (E {P2 (k)}) ≥M
(17)

where the design variable is the probability p of mechanism
(9). Here, M > 0 is a positive constant describing some
desired level of eavesdropper’s error. This is a relaxed
notion of secrecy as compared to the perfect secrecy in
Definition 1. The latter can be recovered as M →∞.
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Unfortunately, we cannot express the objective function or
the constraint of problem (17) as a function of our secrecy
mechanism (9) in closed form. The reason is that, to the
best of our knowledge, there are no closed form expressions
for the expected error of the intermittent Kalman filter.
Nonetheless, we can exploit well-known upper and lower
bounds on the error introduced in Sinopoli et al. (2004).
In particular, we have the following two results.

Proposition 3. Consider system (1) and secrecy mecha-
nism (9). Let p` be a probability defined as follows

p` = 1− 1/ρ2(A) (18)

Then, the eavesdropper’s error is asymptotically lower
bounded by

lim inf
k→∞

trE {P2 (k)} ≥ trS (p). (19)

If pp2 > p`, S (p) is defined as the positive definite solution
of

S (p) = (1− pp2)AS (p)Aᵀ +Q (20)

while if pp2 ≤ p`, trS (p) is defined to be ∞. �
Proposition 4. Consider system (1) and mechanism (9).
Let pu be a probability defined as

pu = inf {λ ∈ [0, 1] : ∃X with X � gλ (X)} (21)

where gλ (X) is defined in (14). Then, the user’s estimation
error is asymptotically upper bounded by:

lim sup
k→∞

trE {P1 (k)} ≤ trV (p). (22)

If pp1 > pu, V (p) is defined as the positive definite solution
of:

V (p) = gpp1 (V (p)) , (23)

while if pp1 ≤ pu, trV (p) is defined to be ∞. �

Propositions 3, 4 follow from the proofs of Theorems 3, 4
in (Sinopoli et al., 2004).

We can utilize the bounds of the preceding propositions
to design a desired secrecy mechanism, by relaxing the
optimization problem (17). In particular, we relax the
constraint of (17) by requiring that the lower bound S (p)
on the eavesdropper’s estimation error is larger than the
desired value M . Moreover we relax the objective with the
upper bound V (p) on the user’s estimation error. Thus,
the relaxation of problem (17) has the form:

minimize
p∈[0,1]

trV (p)

subject to trS (p) ≥M
(24)

Even though Problem (24) is not convex, it has a specific
structure that allows us to solve it efficiently. In partic-
ular, both the objective value trS (p) and the constraint
trV (p) are monotonically decreasing functions with re-
spect to p (see also Lemma 6 in the Appendix). The next
theorem hence explicitly describes the optimal solution.

Theorem 5. Consider system (1) and the mechanism (9).
Let trS (p), trV (p) be the lower and upper bounds, as
defined in Proposition 3 and Proposition 4 respectively.
Then, the optimal solution of problem (24) is given by

p? = max{p ∈ [0, 1] : trS (p) ≥M}. (25)

Proof. In Lemma 6, included in the Appendix, we proved
that trS (p), trV (p) are non-increasing functions of p. As
a result, problem (24) is equivalent to the optimization
problem max{p ∈ [0, 1] : trS2 (p) ≥M}. 2

Capitalizing on the above result and monotonicity, we may
further devise an algorithm to find the optimal solution p∗

of problem (24), based on a bisection search. This process
is presented in Algorithm 1. It takes as inputs the system
and noise parameters A, C, Q, R, probability p2, the
desired bound M > 0 on the eavesdropper’s error and a
positive constant ε. This constant ε represents the absolute
tolerance within which we want to compute p?.

The steps of the algorithm are the following. First, the
probability p` is computed, which according to (18), de-
pends only on the spectral radius of matrix A, and, thus,
can be readily computed. Then, a bisection on the interval
p ∈ [0, 1] is performed in order to solve (25). At each
bisection step, the algorithm evaluates the function trS(p)
at the midpoint p of the current interval. If pp2 ≤ pl, then
the algorithm sets trS(p) =∞. Otherwise, the algorithm
solves the linear matrix equality (20) with respect to S(p)
for the given p, e.g., solved as a Lyapunov equation. Then,
the computed value trS(p) is compared with the desired
value M , and the half-interval for the next bisection step
is selected, based on the fact that trS(p) is decreasing in
p. Algorithm 1 terminates when p? is known to lie within
an interval of ε tolerance. The algorithm terminates after
at most − log2 (ε) iterations, since at each iteration, the
bisection search ends up with half of the interval of the
previous step.

Algorithm 1 Optimal probability p? of problem (24)

Input: A, C, Q, R, p2, M , ε
Output: optimal solution p?

1: Compute p`.
2: Do bisection on p. Values u and l are the upper and

lower bounds in every step of the bisection.
3: Set ` = 0, u = 1 for the initial bounds.
4: while |u− `| < ε do
5: Set p = (`+ u) /2
6: Set trS (p) = ∞ if pp2 ≤ pl. Else, compute

trS (p).
7: if trS (p) < M then
8: Set u = p
9: else

10: Set l = p
11: end if
12: end while
13: return p

Finally, we point out that after Algorithm 1 returns the
optimal probability p?, we may also evaluate the optimal
objective value trV (p?) of (24). As long as p?p1 > pu this
optimal value is finite and can be computed by solving (23)
with respect to V (p?). The value of probability pu can be
computed by a quasi-convex optimization problem, while
equation (23) can be solved by a semidefinite program (see
Sinopoli et al. (2004) for both methods).

5. EXAMPLES

In this section, we present analytical expressions for the
problem of secrecy in the special case of scalar systems,
as well as numerical results for a second order system.
In the former case, we are interested in the tradeoff
between secrecy and utility to the user, as captured by
the mechanisms p∗ that solve problem (24). In particular,
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we examine how the solution depends on the channel’s
parameters and how the solution varies, as the required
bound M on the eavesdropper error varies.

Here all parameters A, C, R, Q, Σ0 ∈ R as well as the
upper bound V (p) ∈ R on the user’s error and the lower
bound S (p) ∈ R on the eavesdropper’s error, as defined in
(20) and (23) respectively, are scalars. Moreover, the scalar
system is one of the special cases where we know exactly
the critical probability and p` = pu = pc = 1 − 1/A2

(Sinopoli et al., 2004). The interesting case to study is
when secrecy is needed, i.e. when the eavesdropper has
bounded expected error without any secrecy mechanism
(p = 1). According to Lemma 2, this happens when
p2 > pc = 1− 1/A2. Also, since S (p) ≥ S (1), the secrecy
constraint S (p) > M with M < S (1) is trivially satisfied.
Thus, we also assume that M ≥ S (1) in this section.

From (19), we can find that S (p) = Q/
(
1− (1− pp2)A2

)
.

Thus, by Theorem 5, we deduce that the optimal secrecy
mechanism p? that solves problem (24) is the probability
value that satisfies S (p?) = M . So, for the scalar case, we
can obtain the following closed form expression for p∗:

p? =
pc
p2

+
Q

Mp2A2
. (26)

Observe that the first term pc
p2

, on the right hand side,

is a probability that guarantees perfect expected secrecy
if p1 > p2 (see the discussion of Section 3). Hence as
M →∞, we may recover perfect expected secrecy.

Next, we evaluate the upper bound on the user’s error
when using the above mechanism p∗, i.e., the optimal
objective value of problem (24). Recall that if p?p1 ≤ pc,
then V (p?) = ∞. Otherwise, if p?p1 > pc, then we can
solve for the positive solution V (p?) of the (quadratic)
equation (23). So, in the latter case, we obtain:

V (p?) =

β +

√
β2 + 4QRC2

[
(A2 − 1)

(
p1
p2
− 1
)

+ p1
Mp2

]
2C2

[
(A2 − 1)

(
p1
p2
− 1
)

+ p1
Mp2

]
where β =

(
A2 − 1

)
R+Q2C.

The expression for V (p?) as a function of M captures the
tradeoff between the guaranteed utility to the user and
the secrecy level M at the eavesdropper. Figure 2 plots
this expression as a function of M for different values of
the channel probabilities p1, p2. The system parameters
were A = 1.2, C = 1, Q = 1 and R = 1. Interestingly, as
the ratio p1/p2 increases, the tradeoff between secrecy and
efficiency improves, meaning that a better estimation error
can be guaranteed at the user at a given secrecy level.

In the second case, we study the estimation performance
over time. We consider a second order system with pa-

rameters A =

[
1.2 1
0 1.1

]
, C = [ 1 0 ], R = 1, Q =

Σ0 =

[
1 0.5

0.5 2

]
and probabilities p1 = 0.9, p2 = 0.6.

In Figure 3, we compare the user’s and eavesdropper’s
expected prediction error trE {Pi (k)}, for i = 1, 2, under
the mechanism p = p`/p2 = 0.51. The expected errors are
approximately computed via Monte Carlo simulation with

Eavesdropper's lower error bound S(p*)
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Fig. 2. This figure shows different tradeoffs between op-
timum user’s upper bound V (p?) and eavesdropper’s
lower bound S (p?) in problem (24), as we vary p1, p2.
As the ratio p1/p2 increases, tradeoff between secrecy
and estimation efficiency improves. As we observe,
tradeoff is in favour of the user when p1 > p2, but
in favor of the eavesdropper when p2 > p1.

10000 iterations. We observe that perfect expected secrecy
is achieved; the user’s expected error is bounded while
the eavesdropper’s grows unbounded with an exponential
rate. Until now we have only explored how the user and
eavesdropper errors behave in expectation. Let us now
present one random time sample of the behavior of the
actual estimation errors ‖x̂i (k)− x (k)‖2, for user and
eavesdropper i = 1, 2 respectively for the same second-
order system. We compare the estimation errors between
the user and the eavesdropper for two cases; i) when no
secrecy mechanism is employed (p = 1), ii) using the
secrecy mechanism with probability p = 0.51. We use the
same randomly generated sample for the noise and packet
drop sequences, in both cases.
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Fig. 3. This figure compares the user’s and eavesdropper’s
expected prediction error. The expected values are
approximated via Monte Carlo simulation with 10000
iterations. Notice that perfect expected secrecy is
achieved.
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Fig. 4. This figure shows how the estimation errors
‖x̂1 (k)− x (k)‖2, ‖x̂2 (k)− x (k)‖2 evolve over time
for two cases. In the first case, no secrecy mechanism
is employed (p = 1). In the second case, a secrecy
mechanism with p = 0.51 is used. The same randomly
generated sequence of noises and packet drops was
used in both cases. The packet drops of the user are
independent of the packet drops of the eavesdropper.

In Figure 4 we see that there is benefit in employing
the secrecy mechanism. When no secrecy is used, the
user’s and eavesdropper’s errors are comparable, and the
confidentiality of the system’s state is compromised. The

time average 1
N

∑N
k=1 ‖x̂i (k)− x (k)‖2 of the errors, for

N = 200, are 1.9 for the user and 4.6 for the eavesdropper
respectively. However, in the later case, where a secrecy
mechanism with p = 0.51 is used, the relative gain we have
improves. The time average of the absolute errors are 6.2
for the user and 2922.7 for the eavesdropper respectively.

However, the eavesdropper’s error drops to small values
infinitely often, as one can see in Figure 4. This occurs
because whenever the eavesdropper successfully intercepts
a measurement, its prediction covariance matrix decreases
dramatically – see also Wu et al. (2014) for a related
discussion. In other words, the fact that the eavesdropper’s
error trE {P2 (k)} grows unbounded in expectation, by our
secrecy definition, does not imply that the actual sample
trP2 (k) is always large.

6. CONCLUSION

In this paper, we considered the novel problem of remote
estimation in the presence of an eavesdropper. Requir-
ing confidentiality makes the problem challenging, and
forces us to modify the communication scheme, by adding
a secrecy mechanism to the sensor. A simple secrecy
mechanism, which randomly withholds measurements, can
guarantee perfect expected secrecy, if the user’s reception
ability is better than the eavesdropper’s. This mechanism
creates a tradeoff between confidentiality and utility, which
can be approximated by solving an optimization problem.
The numerical results of the second order system show
that our proposed mechanism can be useful in practice.
Still, it guarantees secrecy in expectation – with nonzero

probability the eavesdropper’s uncertainty can be small. In
future work, we will address more general channel models
and alternative mechanisms for higher performance. We
will also study whether the condition, that the user’s rate
is higher than the eavesdropper’s, is necessary for general
mechanisms. Other extensions include the case where the
sensor receives packet acknowledgements from the user.
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Appendix A. PROOF OF RESULTS

Proof of Lemma 2

Since (A,C) is detectable,
(
A,Q

1
2

)
is controllable and A is

unstable, the result of Theorem 2 in (Sinopoli et al., 2004)
readily applies. By this result, there exists a pc ∈ [0, 1),
such that

∃Σ0 � 0 : lim
k→∞

trE {Pi (k)} =∞, if p̂i ≤ pc (A.1)

sup
k≥0

trE {Pi (k)} ≤MΣ0
, if p̂i > pc, ∀Σ0 � 0 (A.2)

where i = 1, 2 and MΣ0 is a positive constant, depending
on the initial covariance Σ0. This result directly implies
the statement (16). Hence it remains to show that (15)
holds for any positive definite initial condition Σ0 � 0.

Let Σ′0 � 0 be one initial condition with P ′i (k) the re-
spective error sequence, for which limk→∞ trE {P ′i (k)} =
∞, according to (A.1). Also, let Pi (k) be the error se-
quence with some arbitrary initial condition Σ0 � 0.
Both covariance errors P ′i (k) and Pi (k) , k ≥ 0 are ran-
dom variables that depend on the sequence of packet
successes γi(k), k ≥ 0 according to (13). To complete
the proof, it is sufficient to find a positive constant
β > 1 such that trE {P ′i (k)} ≤ β trE {Pi (k)} for
all k ≥ 0. Then, in the limit limk→∞ trE {Pi (k)} ≥
(1/β) limk→∞ trE {P ′i (k)} = ∞ and the result (15) fol-
lows. Note that as Σ0 � 0, we can find a large enough
positive constant β > 1 such that βΣ0 � Σ′0. Then, we

claim that for any fixed packet success sequence γi (k),
k ≥ 0, we have P ′i (k) � βPi (k) for all k ≥ 0. Hence,
averaging over all possible success sequences, we obtain
trE {P ′i (k)} ≤ β trE {Pi (k)}.
Finally, to prove that P ′i (k) � βPi (k) for all k ≥ 0, we
use induction. At k = 0 we have Σ′0 � βΣ0, which is the
same as P ′i (0) � βPi (0). Suppose that P ′i (k) � βPi (k).
Then, at k + 1 we employ the relation (13)- (14). Notice
that in (14), gλ (X) is an increasing function of X with
respect to the positive semidefinite cone for any λ ∈ [0, 1]
(see Lemma 1 in Sinopoli et al. (2004)). We can also see
that gλ (X) is an increasing function of Q and R as well.
Hence, for β > 1, since βQ � Q, βR � R, we obtain, that
βgλ (X) � gλ (βX). Then, at time k, from (13), we have

βPi (k + 1) =βgγi(k) (Pi (k))

�gγi(k) (βPi (k))

�gγi(k) (P ′i (k)) = P ′i (k + 1) .

The first inequality comes from the fact that β > 1, while
the second comes from monotonicity of gλ (X) with respect
to Xand the induction hypothesis at time step k−1. 2

Lemma 6. The bounds trS (p), trV (p), defined in (20)
and (23), defined to be ∞ when pp2 ≤ pl and pp1 ≤ pu
respectively, are non-increasing functions of p.

Proof. First, we prove that trS (p) is non-increasing
with p. From the proof of Theorem 3 in (Sinopoli
et al., 2004), we know that when pp2 > pl, then
S (p) = limk→∞ Sk+1 (p), is the limit of a sequence
of matrices Sk+1 (p) = mp (Sk (p)), where mp (X) =
(1− pp2)AXAᵀ + Q and S0 (p) = 0. Now observe that
mp (X) is decreasing with p and increasing with X (with
respect to the positive semidefinite cone). Given two dif-
ferent probabilities 1 ≥ λ1 ≥ λ2 > pl/p2, we will use
the monotonicity of mp (X) to show by induction that
Sk (λ1) � Sk (λ2), for all k ≥ 0. For k = 0, it is true,
since S0 (λi) = 0, i = 1, 2. Now, assume that Sk−1 (λ1) �
Sk−1 (λ2) holds. Then,

Sk (λ1) = mλ1
(Sk−1 (λ1))

� mλ2
(Sk−1 (λ1))

� mλ2
(Sk−1 (λ2)) = Sk (λ2)

where the first inequality comes from monotonicity of
mp (X) with respect to p and λ1 ≥ λ2; the second
inequality comes from monotonicity with respect to X and
the induction hypothesis. Taking the trace in both sides
we have that trSk (λ1) ≤ trSk (λ2) and as k → ∞, we
obtain trS (λ1) ≤ trS (λ2). Since trS (p) is extended to
∞ for pp2 ≤ pl, trS (p) is non-increasing in all of [0, 1].

The proof that trV (p) is non-increasing with p is similar.
From the proof of Theorem 4 in Sinopoli et al. (2004),
we have that when pp1 > pu, then V (p) is the limit
of a sequence of matrices Vk+1 (p) = gpp1 (Vk (p)), with
V0 (p) = Σ0. Function gpp1 (X) is defined in Proposition 4
and it is also decreasing with respect to p and increasing
with respect to X (see Lemma 1 in (Sinopoli et al., 2004)).
Repeating exactly the same argument as before, we can
show that if 1 ≥ λ1 ≥ λ2 > pu/p1, then Vk (λ1) � Vk (λ2),
for any k ≥ 0. Therefore, as k →∞, we obtain trV (λ1) ≤
trV (λ2). Since V (p) is extended to ∞ for pp1 ≤ pu, then
V (p) is non-increasing in all of [0, 1]. 2
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