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Abstract— We consider the problem of controlling the
propagation of an epidemic outbreak in an arbitrary contact
network by distributing vaccination resources throughout the
network. We analyze a networked version of the Susceptible-
Infected-Susceptible (SIS) epidemic model when individuals
in the network present different levels of susceptibility to
the epidemic. In this context, controlling the spread of an
epidemic outbreak can be written as a spectral condition
involving the eigenvalues of a matrix that depends on the
network structure and the parameters of the model. We study
the problem of finding the optimal distribution of vaccines
throughout the network to control the spread of an epidemic
outbreak. We propose a convex framework to find cost-
optimal distribution of vaccination resources when different
levels of vaccination are allowed. We illustrate our approaches
with numerical simulations in a real social network.

I. INTRODUCTION

The problem of controlling spreading processes in net-
works appear in many different settings, such as epidemi-
ology [1], [2], computer viruses [3], or viral marketing
[4]. The dynamic of the spread depends on both the
structure of the contact network, the epidemic model and
the values of the parameters associated to each individual.
The dynamic behavior of spreading processes in networks
have been widely studied. In [6], Newman studied the
epidemic thresholds on several random graphs models.
Pastor-Satorras and Vespignani studied viral propagation
in power-law networks [7]. This initial work was followed
by a long list of papers aiming to study the spread in more
realistic network models. Boguna and Pastor-Satorras [8]
considered the spread of a virus in correlated networks,
where the connectivity of a node is related to the connec-
tivity of its neighbors. In [9], the authors analyze spreading
processes in random geometric networks. The analysis of
spreading processes in arbitrary contact networks was first
studied by Wang et al. [10] for the case of discrete-time
dynamics. In [11], Ganesh et al. proposed a continuous-
time Markov process to relate the speed of spreading
with the largest eigenvalue of the adjacency matrix of
the contact network. The connection between the speed
of spreading and the spectral radius of the network was
also found for a wide range of spreading models in [12].
The relationship between the spectral radius of a contact
network and its local structural properties were explored
in [13], [15].
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The development of strategies to control the dynamic of
a spread process is a central problem in public health and
network security. In [16], Borgs et al. proposed a proba-
bilistic analysis, based on the theory of contact processes,
to characterize the optimal distribution of a fixed amount
of antidote in a given contact network. In [17], Aditya et
al. proposed several heuristics to immunize individuals in a
network to control virus spreading processes. In the control
systems literature, Wan et al. proposed in [18] a method to
design optimal strategies to control the spread of a virus
using eigenvalue sensitivity analysis ideas together with
constrained optimization methods. Our work is closely
related to the work in [19] and [20], in which a continuous-
time time Markov processes, called the N-intertwined
model, is used to analyze and control the spread of a SIS
epidemic model.

In this paper, we propose a convex optimization frame-
work to efficiently find the cost-optimal distribution of
vaccination resources in an arbitrary contact network. In
our work, we use a heterogeneous version of the N-
intertwined SIS model [5] to model a spread process in a
network of individuals with different rate of being infected
and recovered. We assume that we can modify the rates
of infection of individuals, within a feasible range, by
distributing vaccines to the individuals in the network.
We assume that there is a cost associated to injecting a
particular amount of vaccination resources to a each indi-
vidual, where the cost function can vary from individual
to individual. Our aim is to find the optimal distribution
of vaccination resources throughout the network in order
to control the spread of an initial infection at a minimal
cost.

II. NOTATION & PRELIMINARIES

In this section we introduce some graph-theoretical
nomenclature and the dynamic spreading model under
consideration.

A. Graph Theory

Let G = (V, E) denote an undirected graph with n
nodes, m edges, and no self-loops1. We denote by V (G) =
{v1, . . . , vn} the set of nodes and by E (G) ⊆ V (G)×V (G)
the set of undirected edges of G. If {i, j} ∈ E (G) we call
nodes i and j adjacent (or neighbors), which we denote

1An undirected graph with no self-loops is also called a simple graph.
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by i ∼ j. We define the set of neighbors of a node i ∈ V
as Ni = {j ∈ V (G) : {i, j} ∈ E (G)}. The number of
neighbors of i is called the degree of node i, denoted by
di. The adjacency matrix of an undirected graph G, denoted
by AG = [aij ], is an n×n symmetric matrix defined entry-
wise as aij = 1 if nodes i and j are adjacent, and aij = 0
otherwise2. Since AG is symmetric, all its eigenvalues,
denoted by λ1(AG) ≥ λ2(AG) ≥ . . . ≥ λn(AG), are real.

B. N-Intertwined SIS Epidemic Model

Our modeling approach is based on the N-intertwined
SIS model proposed by Van Mieghem et al. in [5].
Consider a network of n individuals described by the
adjacency matrix AG = [aij ]. The infection probability of
an individual at node i ∈ V (G) at time t ≥ 0 is denoted
by pi(t).

The viral spreading is characterized by two positive
parameters per node–an infection rate βi > 0 and a curing
rate δi > 0. We use an extension of the the N-intertwined
SIS model in [5] to the case of non-homogeneous infection
and curing rates. The dynamics describing the infection is

dp (t)

dt
= (BAG −D)p (t)− P (t)BAGp (t) , (1)

where p (t) = (p1 (t) , . . . , pn (t))
T , B = diag(βi),

D = diag (δi), and P (t) = diag(pi). Concerning the
non-homogeneous epidemic model, we have the following
result:

Proposition 1: Consider the heterogeneous N-
intertwined SIS epidemic model in (1). Then, if

λ1 (BA−D) ≤ −ε,

for some ε > 0, an initial infection p (0) ∈ [0, 1]
n will

converge to zero exponentially fast.
First, we have

dpi (t)

dt
= βi

n∑
j=1

aijpj (t)− δipi (t)− βipi (t)
n∑

j=1

aijpj (t)

≤βi

n∑
j=1

aijpj (t)− δipi (t) ,

since βi, δi, pi (t),aij ≥ 0. Therefore, the linear dynamic
system

dp̂i (t)

dt
= βi

n∑
j=1

aij p̂j (t)− δip̂i (t) , (2)

upper-bounds the nonlinear dynamical system (1) when
they share the same initial conditions, i.e., p̂ (t) ≥ p (t)
for t ≥ 0 when p̂ (0) = p (0).

This linear dynamic system can be written in matrix
form as

dp̂ (t)

dt
= (BAG −D) p̂ (t) .

2For simple graphs, aii = 0 for all i.

For the above linear system to be stable, we need the eigen-
values of BA −D to be in the open left half-plane. The
state matrix BAG−D has real eigenvalues, since it can be
transform via a similarity transformation to the symmetric
matrix B1/2AGB

1/2 −D. Hence, exponential asymptotic
stability, with an exponential rate ε, is equivalent to the
largest eigenvalue λ1 (BAG −D) < −ε. In the above
analysis, we have shown that the linear dynamics in (2)
upper-bounds the mean-field approximation in (1); thus,
the spectral result in Proposition 1 is a sufficient condition
to control the evolution of an epidemic outbreak. In the
following section, we use this result to characterize the
profiles of infection rates that results in a stable linear
dynamics.

III. A CONVEX FRAMEWORK FOR OPTIMAL
RESOURCE ALLOCATION

In this section, we consider the partial vaccination
problem. In the partial case, we assume that we are able
to modify the infections rates βi in the network by dis-
tributing vaccination resources throughout the individuals
in the network. We assume that the infection rates of each
individual can be modified within a particular feasible
interval, β

i
≤ βi ≤ β̄i, where β̄i > 0 is the value of

the natural infection rate for node i, which is achieved
in the absence of any nodal immunization, and β

i
> 0

is the minimum possible infection rate for node i, which
is achieved when we allocate a large amount of vaccines
at node i. We propose an optimization framework to find
the optimal distribution of resources when there is a cost
function function associated to different values of βi.

A. Vaccination Cost

The cost of achieving a particular infection rate for
node i is denoted by fi (βi). This cost function is node-
dependent and presents the following properties: (it i) The
cost of achieving the natural infection rate is zero, i.e.,
fi
(
β̄i

)
= 0, (it ii) the maximum cost of vaccinating node

i, denoted by Ti, is achieved at the minimum infection
rate, i.e., maxβi fi (βi) = fi

(
β
i

)
, Ti, and (it iii) the

vaccination cost function is monotonically decreasing in
the interval βi ∈

[
β
i
, β̄i

]
. Apart from the above properties,

we make the following convexity assumptions on the cost
function fi to obtain a tractable convex framework:

Assumption 1: The vaccination cost function, fi (βi), is
twice differentiable and satisfies the following constrain:

f ′′
i (βi) ≥ − 2

βi
f ′
i (βi) , (3)

for βi ∈
[
β
i
, β̄i

]
.

Notice that, since fi is monotonically decreasing, we
have that f ′

i (βi) < 0; thus, we have that Assumption 1
implies that f ′′

i (βi) > 0. In other words, Assumption 1
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is stronger than convexity. For example, a function that
satisfies Assumption 1 with equality is:

fi (βi) = Ti
β−1
i − β̄−1

i

β−1

i
− β̄−1

i

. (4)

In practice, for low values of β
i

and β̄i, this function takes
a shape of practical interest.

B. Problem Statements

In this subsection we propose an optimization frame-
work to find the cost-optimal allocation of vaccines in a
given contact network G with adjacency matrix AG . In
particular, we consider the following problem:

Problem 1: Given a curing rate profile,
{δi : i ∈ V (G)}, and a vaccination cost function fi (βi)

for βi ∈
[
β
i
, β̄i

]
, find the optimal distribution of vaccines

to control the propagation of an epidemic outbreak with
an asymptotic exponential decaying rate ε at a total
minimum cost.
According to Proposition 1, this problem can be mathe-
matically stated as the following optimization problem:

T ∗ = min{βi}
∑n

i=1 fi (βi)

s.t. λ1 (BAG −D) ≤ −ε (5)
β
i
≤ βi ≤ β̄i, i = 1, . . . , n,

In the following subsection, we propose a convex for-
mulation to solve this problem under Assumption 1.

C. Semidefinite Programming (SDP) Approach

Our formulation is based on writing the spectral stability
condition λ1 (BAG −D) ≤ −ε using a simple semidefi-
nite constrain. In particular, we have the following result:

Lemma 3.1: For AG symmetric, B = diag (βi) and
D = diag (δi) with βi, δi > 0, we have that
λ1 (BAG −D) ≤ −ε if and only if (D − εI)B−1−AG ≽
0.
Notice that BAG − D is a matrix similar to
B1/2AGB

1/2 − D, since we can pre- and post- multiply
the former matrix by B−1/2 and B1/2, respectively,
to obtain the latter. Hence, since B1/2AGB

1/2 − D
is a symmetric matrix with real eigenvalues, the
eigenvalues of BAG − D, including λ1 (BAG),
are all real. Then, we have that λ1 (BAG −D) ≤
−ε if and only if λi ((D − εI)−BAG) =
λi

(
(D − εI)−B1/2AGB

1/2
)
≥ 0, which is equivalent

to (D − εI) − B1/2AGB
1/2 ≽ 0. Applying a

congruence transformation to (D − εI) − B1/2AGB
1/2

by pre- and post-multiplying by B−1/2, we
obtain that λ1 (BAG −D) ≤ −ε if and only if
(D − εI)B−1 − AG ≽ 0. Using the above Lemma,
we can rewrite the optimization problem 1 as a convex
optimization program, as follows. First, let us rewrite (5)

using the change of variables γi , β−1
i as,

T ∗ , min
{γi}

∑n
i=1 fi

(
γ−1
i

)
s.t. (D − εI) Γ−AG ≽ 0

β̄−1
i ≤ γi ≤ β−1

i
, i = 1, . . . , n, (6)

where Γ = diag (γi). Therefore, the feasible set is convex
in the space of variables γi, i = 1, . . . , n. Furthermore,
we now verify that the cost function

∑n
i=1 fi

(
γ−1
i

)
is

also convex under Assumption 1 by computing its second
derivative,

d2

dγ2
i

∑
i

fi
(
γ−1
i

)
= f ′′

i

(
γ−1
i

) 1

γ4
i

+ 2f ′
i

(
γ−1
i

) 1

γ3
i

≥ 0,

where the last inequality is obtained from Assumption 1,
taking into account that γ−1

i = βi.
The convex optimization program in (6) allows us to

efficiently find the cost-optimal allocation of vaccines to
control the spread of an epidemic outbreak in a given
contact network. In the following subsection, we illustrate
our approach in a real social network.

D. Numerical Results

We illustrate our results by designing the optimal dis-
tribution of vaccines in an online social network when
the cost vaccination function follows (4). We consider
a social network with 247 nodes, and assume that the
individuals in the network present the same recovery rate,
δi = δ = 0.1. In this case, we can rewrite (6) as a
convex program with a convenient structure, as follows.

First, defining a ,
(
β−1

i
− β̄−1

i

)−1

, we have that∑
i

fi (βi) = a
∑
i

β−1
i − a

∑
i

β̄−1
i = aTrace (Γ)− b,

where b , α
∑

i β̄
−1
i . Hence, minimizing

∑
i fi (βi) is

equivalent to minimizing Trace (Γ). Thus, the optimization
problem in (6) can be written as the following semidefinite
program (SDP):

T ∗ , min
Γ

trace (Γ)

s.t. (δ − ε) Γ−AG ≽ 0

β̄−1
i ≤ γi ≤ β−1

i
, i = 1, . . . , n, (7)

Given our network with 247 nodes, we now compute the
optimal distribution of vaccinations in several cases.

The network under consideration has a maximum eigen-
value λ1 (AG) = 13.52. In our simulations, individu-
als have the same natural infection rates β̄i = β̄, and
study three cases: β̄ ∈ {1.2βc, 1.8βc, 2.4βc}. We choose
the value of β

i
< βc to induce a stable disease-free

equilibrium in the case of full-force vaccination, i.e., we
saturate all the individuals with vaccines to shift their
infection rates to β

i
. In our simulations we use a minimum

infection rate β
i

= 0.2β̄i = 0.2β̄; hence, we obtain
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Fig. 1. Vaccination costs versus degree in a social network with 247 nodes.

that β
i
∈ {0.24βc, 0.36βc, 0.48βc}. In other words, our

vaccine reduces the infection rate to a 20% of the natural
infection rate. Using these parameter values, we run three
simulations, each one with a different β̄.

The results of our simulations are summarized in Fig.
1. Each one of the subplots in this figure corresponds to
a different value of β̄ ∈ {1.2βc, 1.8βc, 2.4βc}. For each
value of β̄ we present a scatter plot with 247 data points
(as many as individuals in the network), where each point
has an abscissa equal to fi (βi) (the cost of vaccinating
node i with optimal fraction βi) and an ordinate of di (the
degree of i ∈ V(G)).

IV. COMBINATORIAL RESOURCE ALLOCATION

In this Section, we consider a combinatorial vaccination
problem in which the optimal distribution of vaccines
is allowed to be in the feasible interval βi ∈

[
βi, β̄i

]
.

In the combinatorial vaccination problem, we restrict the
resources to be in the discrete set, βi ∈

{
βi, β̄i

}
. For

this case, we propose a greedy approach that provides an
approximation to the optimal combinatorial solution. We
also provide quality guarantees for this approximation al-
gorithm in Subsection IV-B. The combinatorial vaccination
problem can be stated as follows:

Problem 2: Given a curing rate profile,
{δi : i ∈ V (G)}, and a vaccination cost function
fi (βi) for βi ∈

{
β
i
, β̄i

}
, find the optimal distribution

of vaccines to control the propagation of an epidemic
outbreak with an asymptotic exponential decaying rate ε
at a total minimum cost.
The optimal distribution of vaccines in Problem 2 can be
characterized by the set of individuals IC ⊆ V (G) that are
chosen to be fully immunized, i.e., the infection rates are
switched from β̄i to β

i
< β̄i for i ∈ IC . Let us assume that

the vaccination cost function takes the values fi
(
β̄i

)
= 0

and fi

(
β
i

)
= ci. These extreme values are achieved using

the following affine cost function

fi (βi) , ci
βi − β̄i

β
i
− β̄i

.

Hence, the total cost of vaccination satisfies
n∑

i=1

fi (βi) = aC
∑
i

ciβi − bC ,

where we have defined the constants aC ,
(
βi − β̄i

)−1

and bC , aC
∑

i ciβ̄i. Thus, since aC < 0, the optimal
allocation of vaccines that minimizes

∑n
i=1 fi (βi) is the

same as the one that maximizes
∑

i ciβi. Therefore, defin-
ing the vectors c , (c1, . . . , cn)

T and b , (β1, . . . , βn)
T ,

Problem 2 can be stated as the following optimization
problem:

T ∗
C = max

{βi}
cT b

s.t. λ1 (BAG −D) ≤ −ε (8)

βi ∈
{
β
i
, β̄i

}
, i = 1, . . . , n.

The solution to this problem is combinatorial in nature. In
the following subsections we provide a greedy approach
that approximates the combinatorial solution, as well as a
quality guarantee of our approach.

A. Greedy approach

In this subsection, we provide a greedy algorithm that
iteratively updates the set of nodes that will be (fully)
vaccinated in order to control the spreading of an epidemic
outbreak. In each step of our algorithm, we denote the
set of nodes that are chosen to be part of the vaccination
group as St. We iteratively add to this group the node
that provides the most benefit per unit cost, where the
benefit of vaccinating a is the increment it induces in
λ1 (BAG −D). More formally, given a vaccination group
St, we define the diagonal matrix of associated infection
rates as BSt

, diag
(
β̄i

)
− (β̄i−β

i
)diag(1St

), where 1St

is the n-dimensional indicator vector for the set St. Thus,
the benefit per unit cost of adding node i to St is measured
by the function

∆(i, St) ,
λ1 (BStAG −D)− λ1

(
BSt+{i}AG −D

)
ci

.
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Parameters Metric Greedy Reverse Greedy Degree Threshold Centrality Threshold D∗

β̄ = 2.4βc c′b 3.6298 3.6440 3.2892 2.4518 3.9425
β = 0.2β̄ λ1(δB

−1 −A) 0.0054 0.0355 0.0422 0.1982 n/a

β̄ = 1.8βc c′b 3.0098 3.0098 2.9246 2.0092 3.1406
β = 0.2β̄ λ1(δB

−1 −A) 0.0850 0.1383 0.0774 0.2575 n/a

β̄ = 1.2βc c′b 2.1484 2.1484 2.1201 1.7369 2.1787
β = 0.2β̄ λ1(δB

−1 −A) 0.4383 0.4383 0.6278 1.0101 n/a

Fig. 2. Table with values of the objective function c′b and the residual value of λ1

(
δB−1 −AG

)
for each possible value of β̄i.

A conventional greedy approach could be defined by
the iteration St+1 = St + {it} with S1 = {} and
it , argmaxi ∆(i, St), where this iteration is repeated
until λ1 (BStAG −D) ≤ −ε is satisfied. Notice that the
resulting vaccination group is feasible and satisfies the
spectral condition needed to control the spreading of an
epidemic outbreak.

In practice, we observe that a modification of this
greedy approach provides better results. In this modified
version, we start with a vaccination set S1 = V (G) (i.e.,
all the individuals are vaccinated) and iteratively remove
individuals according to the iteration St+1 = St − {jt}
with jt = argminj ∆(j, St\ {j}), where this iteration
is repeated until λ1 (BSt

AG −D) ≥ −ε is satisfied.
The final vaccination group is chosen to be St−1. No-
tice that, the resulting vaccination group is feasible and
λ1

(
BSt−1AG −D

)
≤ −ε. We denote this approach the

reverse greedy algorithm.
Since our approach is heuristic for a combinatorial

problem, we provide a quality guarantee via Lagrange
duality theory in the following subsection.

B. Quality Guarantee

Using Lagrange duality theory, we provide quality guar-
antees for the performance of our greedy approach by
computing the dual optimal D∗

C .
Theorem 4.1: Given the optimization problem

T ∗
C = maxb cT b (9)

s.t. (D − εI)B−1 −AG ≽ 0

βi ∈ {β
i
, β̄i}, ∀i,

the primal optimal T ∗
C can be upper bounded by D∗

C

computed according to the Lagrange dual

D∗
C = minZ,u 1Tu− trace(AGZ) (10)

s.t. ui ≥ ciβ̄i +
δi
β̄i

Zii ∀i

ui ≥ ciβi
+

δi
β
i

Zii ∀i

Z ≽ 0,

which is a convex Semidefinite Program.
Proof: Notice that the matrix in the above semidef-

inite constraint can be written as (D − εI)B−1 − AG =

∑
i eie

′
i
δi−ε
βi

− AG , where ei is the unit vector in the
standard basis. From (9), we construct the Lagrangian

L(b, Z) = cT b+ trace

(
Z

(∑
i

eie
′
i

δi
βi

−AG

))
, (11)

where βi ∈ {β
i
, β̄i} is kept as a domain constraint and

Z ≽ 0. See Section 5.9 of [21] for further details on
the Lagrange dual of semidefinite constraints. Using the
properties of trace to simplify and decouple we get

L(b, Z) =
∑
i

(
ciβi +

δi
βi

Zii

)
− trace(ZAG). (12)

The dual objective is derived by maximizing the La-
grangian with respect to the primal variables

q(Z) =
∑
i

(
max
βi

ciβi +
δi
βi

Zii

)
− trace(ZAG). (13)

Due to the decoupling in (12) the primal optimization
in (13) can be done for each node, independently. Since
each node has only 2 options we can consider each case
explicitly by defining

ui = max

{
ciβ̄i +

δi
β̄i

Zii, ciβi
+

δi
β
i

Zii

}
. (14)

It is possible to compute ui as a threshold function of Zii,
but for the purpose of constructing the dual it is better to
use an epigraph formulation to rewrite (13) as

q(Z, u) =
∑
i

ui − trace(ZAG) (15)

with the addition constraints that

ui ≥ ciβ̄i +
δi
β̄i

Zii (16)

ui ≥ ciβi
+

δi
β
i

Zii. (17)

Since the dual is a minimization and q(Z, u) is strictly
increasing in u, either (16) or (17) must be achieved with
equality, ensuring that the definition (14) is satisfied at
the optimal point. To conclude, our dual (10) is given by
minimizing (15) subject to the domain constraint Z ≽ 0
and the epigraph constraints (16) and (17). This is a
standard form SDP as defined in section 4.6 of [21]. The
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solution D∗
C is guaranteed to satisfy D∗

C ≥ T ∗
C by weak

duality, [21] Section 5.2.
Theorem 4.1 tells us that for any optimization problem

of the form (9) we can get an accuracy certificate

T ∗
C − cT b ≤ D∗

C − cT b (18)

by solving the dual (10). Since we do not have a strong
duality, we do not expect cT b = D∗

C to be attainable (i.e,
P ∗
C < D∗

C).
Remark 4.1: The solution to the dual gives us some

insight into the primal optimizers via the threshold solution
to (14),

ui(Zii) =

{
ciβ̄i +

δi
β̄i
Zii if Zii ≤ ci

δi
β̄iβi

ciβi
+ δi

β
i

Zii if Zii ≥ ci
δi
β̄iβi

. (19)

It appears we can deduce the primal optimizers b∗ from
Z∗, but in practice for most nodes i, Z∗

ii = β̄iβi
ci/δi

making it impossible to determine β∗
i . In some cases there

are nodes that have Z∗
ii not equal to the threshold. These

nodes have their optimal action specified by Z∗
ii and (19).

This at least allows for a reduction of the dimension of the
primal problem which due to its combinatorial form could
be a very large improvement.

Several papers in the literature advocate for vaccination
strategies based on popular centrality measures, such as the
degree or eigenvector centrality [22]. In this subsection,
we compare our greedy heuristic to vaccination strategies
based on centrality measures. In our simulation, we use
the adjacency matrix with 247 nodes previously used in
Subsection III-D and the same values for the parameters
δi = δ = 0.1, βc = δ/λmax(AG) = 7.4e − 3, β̄i ∈
{1.2βc, 1.8βc, 2.4βc} andβ

i
= 0.2β̄i for all i. In Table 2,

we include the values of the objective function c′b and the
residual value of λ1

(
δB−1 −AG

)
for each possible value

of β̄i. In each case, we run the greedy algorithm and the
reverse greedy algorithm (both proposed in Section IV-
A), as well as two previously proposed algorithms based
on the degree and the eigenvalue centrality metrics. In
the last column of Table 2, we also include the upper
bound provided by Theorem 4.1. Observe that our greedy
algorithms are always within 10% of the upper bound D∗

C .
Furthermore, the reverse greedy algorithm outperforms the
others, specially those based on centrality measures.

V. CONCLUSIONS

We have studied the problem of controlling the dynamic
of the SIS epidemic model in an arbitrary contact network
by distributing vaccination resources throughout the net-
work. Since the spread of an epidemic outbreak is closely
related to the eigenvalues of a matrix that depends on the
network structure and the parameters of the model, we can
formulate our control problem as a spectral optimization
problem in terms of semidefinite constraints. In the partial
vaccination case, where intermediate level of vaccination
are allowed, we have proposed a convex optimization

framework to efficiently find the optimal allocation of
vaccines when the function representing the vaccination
cost satisfies certain convexity assumptions. In the com-
binatorial vaccination problem, where individuals are not
allowed to be partially vaccinated, we propose a greedy
approach with quality guarantees based on Lagrangian
duality. We illustrate our results with numerical simulations
in a real online social network.
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