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Abstract— This paper provides a necessary and sufficient
condition for the compositional verification of a continuous
system with additively separable barrier functions. The compo-
sitional safety verification enables the verification of an inter-
connection of subsystems. The idea behind the compositional
analysis is to allow the verification of systems with a high
dimension, by the verification of multiple lower dimensional
subproblems. In the compositional safety analysis, a particular
structure is imposed on the barrier certificate, restricting the
applicability of the method.

We show an example of a system that cannot be verified
using the compositional method, but can be verified using a
centralized method. This example highlights how not to decom-
pose systems, and should be used to guide the decomposition
of a system into appropriate subsystems. Finally, we provide
a second condition for the compositional safety analysis that
enables the verification of the counterexample, by imposing a
less restrictive structure of the barrier function. This shows
that the counterexample can be solved with a compositional
method, but at an increased computational complexity.

I. INTRODUCTION

Safety verification is a necessary part of developing safety-
critical control systems, where a malfunction may have
severe consequences. The safety verification ensures that
a control system does not violate any state constraints.
Numerous methods have been developed for verifying the
safety of a system; see [1] for a survey.

The safety verification determines if the reachable set
intersects a set of unsafe states. The computation of the
reachable states for a dynamical system is in general very
difficult [2], and it may only be possible to calculate ap-
proximate the reachable states for systems of low dimension.
According to [3], safety verification is applicable for systems
with approximately five or less continuous states. Therefore,
several methods have been developed to approximate the
reachable set of a dynamical system. In [4], the reachable
states are approximated using a finite number of simulated
trajectories, and exploiting an incremental stability condition.

Another class of methods, e.g., [5], [6] verifies the safety
of a system, by using the vector field to find invariant sets
that do not include the unsafe states. Similarly, the papers [7],
[8] provide a method for calculating barrier certificates for
safety analysis of continuous, stochastic, and hybrid systems.
The idea of these works is to find a barrier function that is
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decreasing along system trajectories, and has a zero level set
(a so-called barrier), which no solution trajectory crosses. If
the set of initial states is a subset of the zero sublevel set
of the barrier function, and the set of unsafe states is in its
complement, then the system is safe.

The generation of the barrier certificates is similar to
the generation of Lyapunov functions for proving stability.
Therefore, it is important to use a computational method
that scales well. Therefore, linear matrix inequalities (LMIs)
and sum of squares (SOS) are used to generate the barrier
certificates [9].

Common to the previously mentioned methods is that
they verify the safety of a system, by studying a system
directly. However, it may be beneficial to study a system as
an interconnection of subsystems, and decompose the verifi-
cation problem into smaller subproblems. This is suggested
for compositional stability analysis in [10] and an analysis
framework based on assume-guarantee reasoning is presented
in [11]. In addition, a compositional method for generating
barrier certificates is proposed in [12].

In this paper, we show when compositional barrier certifi-
cates can be generated using the method presented in [12].
It is shown that barrier certificates generated by the com-
positional method are additively separable functions. This
implies that the decomposition of a system into subsystems
should be generated such that an additively separable barrier
certificate exists. Otherwise, the compositional method fails
to verify the system. This is a very restrictive assumption;
hence, the method is not as general as the centralized method
presented in [7], [8]. However, in oppose to the centralized
method, the compositional method scales very well.

We provide a simple example, where the compositional
method fails. To alleviate the experienced issues, we pro-
pose another safety condition that is capable of handling
the previous counterexample, but the method has a higher
computational complexity.

To shorten the presentation, we only consider so-called
weak barrier certificates, but the results apply for strict barrier
certificates as well. Furthermore, we do not show how to
algorithmically generate the certificates. Details about the
generation of barrier certificates can be found in [12].

The paper is organized as follows. Section II explains
the verification problem in terms of barrier certificates,
and Section III explains the compositional condition for
generating barrier certificates. Section IV classifies the bar-
rier certificates that can be generated by the compositional
method, and Section V proposes a more general method for
doing the compositional safety analysis. Finally, Section VI
comprises conclusions.

51st IEEE Conference on Decision and Control
December 10-13, 2012. Maui, Hawaii, USA

978-1-4673-2064-1/12/$31.00 ©2012 IEEE 4580



II. BARRIER CERTIFICATES

In this section, we present the barrier certificate method,
which can be used to verify the safety of a dynamical system.

We consider a continuous system given as a system of
ordinary differential equations

ẋ = f(x), (1)

where x ∈ Rn is the state. Compared to [7], [8], [12] on
which this paper is based, the disturbance input to the system
is omitted to clarify the presentation. However, the results in
this paper can be easily extended to include disturbances.

We denote the solution of the Cauchy problem (1) with
x(0) = x0 on an interval [0, T ] by φx0 , i.e.,

dφx0
(t)

dt
= f (φx0

(t)) (2)

for all t ∈ [0, T ].
We consider a system given by Γ = (f,X,X0, Xu), where

f : Rn → Rn is continuous, X ⊆ Rn, X0 ⊆ X , and Xu ⊆
X . In the safety verification, we only consider trajectories
initialized in X0 that are contained in the set X . We verify
if there exists a trajectory that can reach an unsafe set Xu.

For a map f : A → B and subset C ⊂ A, we write
f(C) ≡ {f(x)| x ∈ C}. Thus, the safety of a system Γ is
defined as follows.

Definition 1 (Safety): Let Γ = (f,X,X0, Xu) be given. A
trajectory φX0

: [0, T ]→ Rn is unsafe if there exists a time
t ∈ [0, T ], such that φX0([0, t]) ∩Xu 6= ∅ and φX0([0, t]) ⊆
X .

We say that a system Γ is safe if there are no unsafe
trajectories.

To verify the safety of Γ, we use the following proposition.
Proposition 1 (Weak barrier certificate [7], [8]): Let

Γ = (f,X,X0, Xu) be given. If there exists a differentiable
function B : X → R satisfying

B(x) ≤ 0 ∀x ∈ X0, (3a)
B(x) > 0 ∀x ∈ Xu, and (3b)

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ X. (3c)

Then the system Γ is safe.
Proposition 1 states that a trajectory of a system initialized
in a state within the zero sublevel set of a nonincreasing
function (along system trajectories), cannot reach the com-
plement of the zero sublevel set.

A. Notation

For k ∈ N. Given x = (x1, . . . , xk) ∈ Rn1 × · · · ×Rnk ,
with xi ∈ Rni , we define x̂i ≡ (x1, . . . , xi−1, xi+1, . . . , xk).
Similarly, given a sequence of maps (h1, . . . , hk), we define
ĥi ≡ (h1, . . . , hi−1, hi+1, . . . , hk). Finally, n =

∑
i ni.

III. COMPOSITIONAL BARRIER CERTIFICATES

In this section, we pose the safety verification as a com-
positional problem, by assuming that a dynamical system is
given as an interconnection of subsystems. This is based on
conditions given in [12].

Σ1 Σ2

Σ3

y1

y1
2

y2
2y3

Fig. 1. Interconnection of three subsystems Σ1,Σ2,Σ3.

First, we provide the definition of an interconnected sys-
tem and provide a small example, to give the necessary
intuition. Note that any system (1) can be given as an
interconnection of subsystems.

Definition 2: Let Γ = (f,X,X0, Xu) be a dynamical
system with

ẋ = f(x), (4)

where x ∈ Rn is the state.
Let k ∈ N and x = (x1, . . . , xk). For i = 1, . . . , k, let

xi ∈ Rni , let gi : Rn−ni → Rmi and hi : Rni → Rqi be
continuous maps, and let q ≡

∑
i qi. Let X = X1×· · ·×Xk,

X0 = X0,1 × · · · ×X0,k, and Xu = Xu,1 × · · · ×Xu,k. We
say that the system Γ = ({fi}, {Xi}, {X0,i}, {Xu,i}) with

ẋi = fi(xi, gi(x̂i)),

yi = hi(xi)
(5)

where the map gi gives the inputs to subsystem i and that
the map hi gives the outputs of subsystem i for i = 1, . . . , k
is an interconnected system of f(x) if

f(x) =


f1(x1, g1(x̂1))

...
fi(xi, gi(x̂i))

...
fk(xk, gk(x̂k))

 (6)

for all x ∈ X and there exist maps ei : Rq−qi → Rmi

gi = ei ◦ ĥi. (7)
The input of subsystem i, given by gi, is a composition of
outputs ĥi and the interconnection graph ei. The composi-
tional setup is clarified by providing a system consisting of
three interconnected subsystems shown in Figure 1.

Let each subsystem be described by a system of continu-
ous ordinary differential equations and an output map

Σ1 :

{
ẋ1 = f1(x1, g1(x̂1))

y1 = h1(x1)
(8a)

Σ2 :

{
ẋ2 = f2(x2, g2(x̂2))

y2 = h2(x2)
(8b)

Σ3 :

{
ẋ3 = f3(x3, g3(x̂3))

y3 = h3(x3),
(8c)
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where xi ∈ Xi ⊆ Rni is the state and yi ∈ Rqi is the
output given by the map hi : Rni → Rqi . Note that the
interconnection of the three subsystems is defined by ei :
Rq−qi → Rmi . From Figure 1, it is seen that

e1 :(y1
2 , y

2
2 , y3) 7→ (y1

2 , y3), (9a)
e2 :(y1, y3) 7→ y1, (9b)

e3 :(y1, y
1
2 , y

2
2) 7→ y2

2 . (9c)

Note that the interconnected system induces a natural
graph structure, where there are no self-loops and there is
only one edge from one vertex to another. The graph can
be described by an adjacency matrix E ∈ Rk × Rk, where
E(i, j) = 1 if there is an edge between subsystem i and j,
with the head at subsystem i and the tail at subsystem j.
Note that the ith row of E can be derived from ei. For the
graph in Fig. 1 the adjacency matrix is

E =

0 1 1
1 0 0
0 1 0

 . (10)

Finally, we can state the combinatorial condition for safety.
Corollary 1 ([12]): Let k ∈ N and let the dynamical

system Γ = ({fi}, {Xi}, {X0,i}, {Xu,i}) be given. If there
exist differentiable functions Bi : Xi → R, constants
αi, βi ∈ R, and continuous functions γi : Rqi+mi → R

for i = 1, . . . , k such that

Bi(xi) + αi ≤ 0 ∀xi ∈ X0,i, (11a)
Bi(xi)− βi > 0 ∀xi ∈ Xu,i, (11b)
∂Bi
∂xi

(xi)fi(xi, gi(x̂i)) ≤ γi(hi(xi), gi(x̂i))

for all (xi, x̂i) ∈ Xi × X̂i,

(11c)

and for all (xi, x̂i) ∈ Xi × X̂i,∑
i

αi ≥ 0,
∑
i

βi ≥ 0,
∑
i

γi(hi(xi), gi(x̂i)) ≤ 0. (11d)

Then the system Γ is safe.

IV. EXISTENCE OF COMPOSITIONAL BARRIER
CERTIFICATES

In this section, we show that Proposition 1 and Corollary 1
are equivalent, if the barrier certificate is assumed to be
additively separable and the differential of the output maps
has constant rank. First, we define an additively separable
function and state a necessary assumption on the output map.
Then we provide three lemmas from which the main theorem
follows. Finally, we provide two examples, one of which the
compositional method fails to verify.

Definition 3: Let k ∈ N and i = 1, . . . , k. We say that
a function ϕ : Rn → R is additively separable in x =
(x1, . . . , xk) if there exist functions ϕi : πi(R

n)→ R, where
πi is a projection that takes (x1, . . . , xk) to xi such that

ϕ(x) =
∑
i

ϕi(xi) ∀x ∈ Rn, (12)

where xi ∈ Rni and n =
∑
i ni.

Lemma 3 relies on the generation of a coordinate trans-
formation that can be generated if the following assumption
on the output map holds.

Assumption 1: Let Dhi be the differential of hi. For i =
1, . . . , k

Dhi(xi) (13)

has constant rank.
The assumption guarantees that an output cannot occasion-
ally ”disappear”.

A necessary and sufficient condition is given below for
the composition of inequality constraints.

Lemma 1: Let k ∈ N. For i = 1, . . . , k, let ni ∈ N,
fi : Rni → R be a continuous function, and Xi ⊆ Rni be
compact. There exist constants ci ∈ R such that

fi(xi)− ci ≤ 0 ∀xi ∈ Xi and (14a)∑
i

ci ≤ 0 (14b)

if and only if ∑
i

fi(xi) ≤ 0 ∀xi ∈ Xi. (15)

From Lemma 1, it is seen that an inequality (15) in n
variables is equivalent to k inequalities in ni variables and an
inequality constraint involving only constants. This is used
later to decompose inequality constraints.

The following result is used in Lemma 3, to reduce the
number for coupling variables in the compositional condition
for safety in Corollary 1, by exploiting Assumption 1.

Lemma 2: Let γ : Rn → R be a continuous function and
let h : Rn → Rq be a smooth map such that Dh has constant
rank k. Then there is a smooth map h̄ : Rn → Rn−k such
that Dh̄ has constant rank n− k, and a continuous function
γ̃ : Rq+(n−k) → R such that

γ(x) = γ̃(h(x), h̄(x)) ∀x ∈ Rn. (16)
Proof: We use Constant Rank Theorem, recalled here

for completeness: Let V , W be m, n-dimensional vector
spaces and U ⊂ V an open set. If h : U → W is a smooth
map such that Dh has constant rank k in U , then for each
point p ∈ U there are charts (U,ϕ) and (W,ψ) containing
p, h(p) such that

ψ ◦ h ◦ ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0). (17)

To see how γ̃ and h̄ can be generated, we give the following
commutative diagram based on Constant Rank Theorem.

R

Rn
h //

ϕ x 7→(a,b)
��

γ

99

Rq

ψ h(x) 7→(a,0)
��

Rk ×Rn−k

π2 (a,b)7→b
��

// Rk ×Rn−k

π1 (a,0) 7→a
��

Rn−k Rk
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Now, the functions h̄ and γ that satisfy (16) are
h̄ = π2 ◦ ϕ, where π2 : (x1, . . . , xn) 7→ (xk+1, . . . , xn)
and let γ̃ = γ ◦ ϕ−1 ◦ (π1 ◦ ψ, id), where
π1 : (x1, . . . , xn) 7→ (x1, . . . , xk) and id is the identity map
of dimension n− k.

The final lemma on the decomposition of inequality con-
straints is shown next.

Lemma 3: Let k ∈ N. For i ∈ {1, . . . , k}, let
• mi, ni, qi ∈ N and define q ≡

∑
i qi,

• Vi ⊆ Rni+(n−ni) be compact,
• fi : Rni+mi → Rni and gi : Rn−ni → Rmi be

continuous maps,
• ϕi : Rni → R be a continuous function,
• hi : Rni → Rqi be a smooth map such that Dhi has

constant rank ri.
There exist continuous functions γi : Rqi+mi → R such that
for all (xi, x̂i) ∈ Vi ⊆ Rni ×Rn−ni

ϕi(xi)fi(xi, gi(x̂i)) ≤ γi(hi(xi), gi(x̂i)), and (18a)∑
i

γi(hi(xi), gi(x̂i)) ≤ 0 (18b)

if and only if for all (xi, x̂i) ∈ Vi∑
i

ϕi(xi)fi(xi, gi(x̂i)) ≤ 0. (19)

Proof: It is seen that (18) implies (19), by summing
(18a) for i = 1, . . . , k, such that for all (xi, x̂i) ∈ Vi∑

i

ϕi(xi)fi(xi, gi(x̂i)) ≤
∑
i

γi(hi(xi), gi(x̂i)), (20)

which by (18b) is bounded from above by zero.
To show that (19) implies (18), let

γ̄i(xi, gi(x̂i)) ≡ ϕi(xi)fi(xi, gi(x̂i)) ∀(xi, x̂i) ∈ Vi. (21)

By (19) ∑
i

γ̄i(xi, gi(x̂i)) ≤ 0 ∀(xi, x̂i) ∈ Vi. (22)

Lemma 2 states that by assuming that Dhi has constant rank
ri; there exist functions γ̃i : Rqi+(ni−ri)+mi → R and maps
h̄i : Rni → Rni−ri such that for all (xi, x̂i) ∈ Vi

γ̃i(hi(xi), h̄i(xi), gi(x̂i)) = γ̄i(xi, gi(x̂i)). (23)

We rewrite (22) as follows∑
i

γ̃i(hi(xi), h̄i(xi), gi(x̂i)) ≤ 0 ∀(xi, x̂i) ∈ Vi. (24)

It is seen from (24) that only γ̃i depends on h̄i(xi); hence,
we define

γi(hi(xi), gi(x̂i)) ≡ sup
zi∈Xi

γ̃i(hi(xi), h̄i(zi), gi(x̂i)). (25)

Then by Proposition 2.3 and Lemma 2.2 in [13] γi is a
continuous function and for all (xi, x̂i) ∈ Vi

ϕi(xi)fi(xi, gi(x̂i)) ≤ γi(hi(xi), gi(x̂i)) and (26a)∑
i

γi(hi(xi), gi(x̂i)) ≤ 0. (26b)

Notice the importance of using γi in oppose to γ̄i. γi is
only a function of the outputs of subsystem i, while γ̄i
is a function of its entire state vector. This implies that
the dimension of the coupling is drastically reduced if the
number of output variables is small compared to the number
of states. Furthermore, it is important to note that γi is
continuous, as it enables γi to be approximated arbitrarily
close by polynomials on a compact set. This is favorable, as
polynomial inequality and equality constraints can be solved
algorithmically by use of sum of squares programming [14].

We can now state when Proposition 1 and Corollary 1 are
equivalent.

Theorem 1: Let k ∈ N, and let
ẋ1

...
ẋi
...
ẋk

 =


f1(x1, g1(x̂1))

...
fi(xi, gi(x̂i))

...
fk(xk, gk(x̂k))

 (27)

be an interconnected system of f(x).
There exists an additively separable continuous function

ϕ : Rn → R such that

ϕ(x) ≤ 0 ∀x ∈ X0, (28a)
ϕ(x) > 0 ∀x ∈ Xu, and (28b)
∂ϕ

∂x
(x)f(x) ≤ 0 ∀x ∈ X (28c)

if and only if for i = 1, . . . , k there exist continuous
functions ϕi : Rni → R and γi : Rqi+mi → R and constants
αi, βi ∈ R such that

ϕi(xi) + αi ≤ 0 ∀x ∈ X0, (29a)
ϕi(xi)− βi > 0 ∀x ∈ Xu, (29b)
∂ϕi
∂xi

(xi)fi(xi, gi(x̂i)) ≤ γi(hi(xi), gi(x̂i)) ∀x ∈ X (29c)

and ∑
i

αi ≥ 0, (29d)∑
i

βi ≥ 0, and (29e)∑
i

γi(hi(xi), gi(x̂i)) ≤ 0. (29f)

Proof: The conditions (29) implies (28) directly. There-
fore, we only show the opposite direction. Suppose ϕ is ad-
ditively separable, then per definition there exist continuous
functions ϕi : Rni → R such that

ϕ(x) =
∑
i

ϕi(xi) ∀x ∈ X. (30)
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This implies that (28) can be written as∑
i

ϕi(xi) ≤ 0 ∀x ∈ X0, (31a)∑
i

ϕi(xi) > 0 ∀x ∈ Xu, and (31b)

∑
i

∂ϕi
∂xi

(xi)fi(xi, gi(x̂i)) ≤ 0 ∀x ∈ X. (31c)

From Lemma 1, it follows directly that (31a) is equivalent
to (29a) and (29d). In addition, (31b) is equivalent to (29b)
and (29e). Finally, Lemma 3 shows that (28c) is equivalent
to (29c) and (29f).
Remark that to generate the additively separable barrier
functions, one should only use the sum of bases in xi for
i ∈ {1, . . . , k}.

To clarify the theorem, two examples are provided. Ex-
ample 1 demonstrates the necessity of αi and βi, and
Example 2 demonstrates the restrictiveness of assuming that
ϕ is additively separable.

Example 1: Consider the following simple dynamical sys-
tem

Σ1 : ẋ = −x (32a)
Σ2 : ẏ = −y (32b)

where x, y ∈ R. The system is split into two independent
dynamical systems Σ1 and Σ2. The set of initial states is
X0 = [4, 5] × [4, 5] and the set of unsafe states is Xu =
[1, 2]× [4, 5]. The vector field, X0, and Xu are illustrated in
Fig. 2.

1 2 3 4 5
3

3.5

4

4.5

5

5.5

6

y

x

X0Xu

Fig. 2. Vector field (blue arrows) and safe and unsafe sets (black boxes).

From X0 and Xu, it is seen that there exists no function ϕ2

such that ϕ2(y) ≤ 0 for all y ∈ [4, 5] and ϕ2(y) > 0 for all
y ∈ [4, 5]. Therefore, the constants αi and βi are necessarily
different from zero, even though the dynamics is completely
decoupled for the two subsystems.

An additively separable barrier certificate ϕ =
∑
i ϕi is

given by ϕ1 = 0.26x4−2x3 +3x2 +2.65 and ϕ2 = 0.1y2−
1.6. For α1 = 2.2, α2 = −1.8, β1 = 1.2, β2 = −0.8, the
conditions in (29) are satisfied.

In the next example, we show that compositional barrier
certificates cannot always be generated, even for linear
systems with real eigenvalues.

Example 2: Consider the following 2-dimensional dy-
namical system

Σ1 : ẋ = −x+ y (33a)
Σ2 : ẏ = −y (33b)

where x, y ∈ R. The system is split into two subsystems
Σ1 and Σ2, and the state of Σ2 is input to Σ1. We consider
a compact set of the state space (x, y) ∈ V , where V ≡
[−a, a]× [−b, b] and a, b ∈ R≥0.

We show that it is not possible to generate any meaningful
additively separable barrier certificate ϕ(x, y) = ϕi(x) +
ϕi(y). For convenience, let p1 ≡ ∂ϕ1/∂x and p2 ≡ ∂ϕ2/∂y.
Then ϕ(x, y) is nonincreasing along the vector field if

p1(x)(−x+ y)− yp2(y) ≤ 0 ∀(x, y) ∈ V. (34)

It is seen that{
p1(x) ≥ 0 for x > 0

p1(x) ≤ 0 for x < 0
(35a){

p1(x)− p2(y) ≤ 0 for y > 0

p1(x)− p2(y) ≥ 0 for y < 0.
(35b)

This implies that p2(y) ≥ p1(x) ≥ 0 for y > 0 and 0 ≤
p1(x) ≥ p2(y) for y < 0; hence, p2(y) ≥ supx∈[−a,a] p1(x)
for y > 0 and p2(y) ≤ infx∈[−a,a] p1(x) for y < 0. It is
seen that p2(y) makes a jump at y = 0 unless p1 is the zero
polynomial. This implies that we can verify nothing about
Σ1, i.e., our analysis will say that solutions may reach the
entire state space for every initial condition.
Note other compositional methods for the analysis of dynam-
ical systems do not apply for the previous example either. For
an example, see the compositional stability condition given
in [10].

V. REFINED COMPOSITIONAL ANALYSIS

To alleviate the issue experienced in Example 2, we
propose another condition for safety, which at the cost of
more coupling variables handles the previous example. The
idea is to let each ϕi depend on both xi and gi(x̂i).

To simplify the notation of the problem, we define the
set of neighbors for subsystem i, as the set of subsystems,
which has an output that is an input to subsystem i. The
set of neighbors is defined from the adjacency matrix E,
see (10), describing the interconnection of the subsystems.
We say that the neighbors of subsystem i have the following
indices

Ni = {j ∈ {1, . . . , k}|E(i, j) = 1}. (36)

We define N̄i ≡ Ni ∪ {i}. The complement of N̄i is given
as

N̄ c
i = {1, . . . , k}\N̄i. (37)

Let z = (z1, . . . , zk) and A ⊆ {1, . . . , k}, then we define
ẑA ≡ {zi|i ∈ {1, . . . , k}\A} and zA ≡

∑
i∈A zi.

Now, we can state the refined safety condition as follows.
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Proposition 2: Let k ∈ N, and let
ẋ1

...
ẋi
...
ẋk

 =


f1(x1, g1(x̂1))

...
fi(xi, gi(x̂i))

...
fk(xk, gk(x̂k))

 (38)

be an interconnected system of f(x).
There exists a continuous function ϕ : Rn → R given by

ϕ(x) =
∑
i

ϕi(xi, gi(x̂i)) ∀x ∈ Rn (39)

such that

ϕ(x) ≤ 0 ∀x ∈ X0, (40a)
ϕ(x) > 0 ∀x ∈ Xu, and (40b)
∂ϕ

∂x
(x)f(x) ≤ 0 ∀x ∈ X (40c)

if and only if for i ∈ {1, . . . , k} there exist continuous
functions γi : RqN̄i

+mNi → R, αi : Rqi+mi → R, and
βi : Rqi+mi → R such that

ϕi(xi, gi(x̂i)) + αi(hi(xi), gi(x̂i)) ≤ 0 ∀x ∈ X0, (41a)
ϕi(xi, gi(x̂i))− βi(hi(xi), gi(x̂i)) > 0 ∀x ∈ Xu, (41b)∑
j∈N̄i

∂ϕi
∂xj

(xi, gi(x̂i))fj(xj , gj(x̂j))

≤ γi(x̂N c
i
, ĝN c

i
(x̂N c

i
)) ∀x ∈ X

(41c)

and ∑
i

αi(hi(xi), gi(x̂i)) ≥ 0,∑
i

βi(hi(xi), gi(x̂i)) ≥ 0,∑
i

γi(x̂N c
i
, ĝN c

i
(x̂N c

i
)) ≤ 0.

(41d)

Proof: The equivalence between (40a) and (41a), and
(40b) and (41b) follows directly from the proof of Lemma 3
starting from (24) to the end of the proof. To obtain (41c),
observe that ∂ϕi

∂xj
(xi, gi(x̂i)) is only nonzero for j ∈ N̄i.

For each nonzero partial derivative, ∂ϕi/∂xj is multiplied
by fj(xj , gj(x̂j)) that is a function of xj and gj(x̂j). This
implies that the left hand side of (41c) depends on x̂N̄ c

i

(states of subsystem i and its neighbors) and ĝN c
i
(x̂N c

i
) (the

neighbors inputs - not its own, as their states are already in
γi).

The seemingly subtle change of ϕi has a great impact on
the number of coupling variables involved in the generation
of the barrier certificate. Therefore, one should only include
gi(x̂i) in ϕi if it is really necessary. Remark that a subset
of functions ϕi may be dependent of gi(x̂i), while others
may only depend on xi. Note that the issue of Example 2 is
easily resolved, as one can generate quadratic forms in both
x and y.

VI. CONCLUSION

We have classified the barrier certificates, which can be
generated by a proposed compositional method for verifying
the safety of continuous dynamical systems. It is shown that
even for some linear systems, the compositional method fails
to verify the safety.

Even though the compositional method is not as general
as a centralized safety verification, it is very useful in
the verification of high-dimensional systems, since it scales
well in the number of states in the system. Therefore, the
counterexamples where the compositional method fail should
be used to generate ”good” decompositions of systems.

A second compositional condition for safety was proposed,
which alleviates some of the issues of the initial method, but
has a higher computational cost. Therefore, the choice of
method is a compromise between generality and computa-
tional complexity. Therefore, our future work is to identify
the necessary structure of the barrier certificate based on the
vector field.
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