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Abstract— In this paper, for linear time-invariant plants,
where a collection of possible inputs and outputs are known
a priori, we address the problem of determining the commu-
nication between outputs and inputs, i.e., information patterns,
such that desired control objectives of the closed-loop system
(for instance, stabilizability) through static output feedback may
be ensured.

We address this problem in the structural system theoretic
context. To this end, given a specified structural pattern (loca-
tions of zeros/non-zeros) of the plant matrices, we introduce the
concept of essential information patterns, i.e., communication
patterns between outputs and inputs that satisfy the following
conditions: (i) ensure arbitrary spectrum assignment of the
closed-loop system, using static output feedback constrained to
the information pattern, for almost all possible plant instances
with the specified structural pattern; and (ii) any communi-
cation failure precludes the resulting information pattern from
attaining the pole placement objective in (i).

Subsequently, we study the problem of determining essential
information patterns. First, we provide several necessary and
sufficient conditions to verify whether a specified information
pattern is essential or not. Further, we show that such conditions
can be verified by resorting to algorithms with polynomial
complexity (in the dimensions of the state, input and output).
Although such verification can be performed efficiently, it is
shown that the problem of determining essential information
patterns is in general NP-hard. The main results of the paper
are illustrated through examples.

I. INTRODUCTION

Real world systems are often too complex to be tackled
by the classical paradigm of centralized decision-making.
These systems include multi-agent networks, infrastructure
systems such as the electric power grid, process control and
manufacturing systems, just to name a few [1], [2], [3].
Furthermore, due to the distributed nature of the sensing-
actuation capabilities of the aforementioned systems, there
exist more often than not, a multitude of decision-makers.
Therefore, the crafted communication structures need to take
into account that only partial data may be accessed by the
decision-makers, while guaranteeing that a desired closed-
loop control performance is achievable. Some groundbreak-
ing work in the understanding of necessary and sufficient
conditions to ensure arbitrary spectrum placement of closed-
loop systems constrained to specified information patterns
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can be found in [1], [4], [5], [6]. In recent years, research
in decentralized control has seen several advances that con-
tributed to a renewed interest in the field [7], [8], [9], [10],
[11], [12], [13].

In order to contribute to the understanding of how to
instrument the communication between decision-makers, we
specifically focus on addressing the following question:

Q What is the essential information pattern, i.e., which
sensors need to supply data to which actuators, such that
desired control objectives (for instance, stabilizability)
may be ensured, and any communication failure renders
these objectives unattainable?

Hereafter, the desired control objective consists in ensuring
that the spectrum of the closed-loop system, using static
output feedback subject to the information pattern (IP),
can be arbitrarily chosen. The above question has a direct
consequence in the study of the resilience of a closed-loop
system with respect to communication failures or general
changes in the IP. Furthermore, it provides unique insights
on the design of robust communication structures between
decision-makers.

Towards this goal, we resort to a structural system theo-
retic framework [14], where equivalence classes of system
instances with a specified zero/non-zero pattern of the plant
matrices are studied. A feasible IP in this context corre-
sponds to a communication pattern between outputs and
inputs that ensures, for almost all plant instances with the
specified structural pattern, arbitrary spectrum assignment of
the corresponding closed-loop system is achievable through
static output feedback constrained to the IP. For a specified
structural system, conditions that verify whether an IP is
feasible or not were provided in [15], [16], [17], and used for
the design of feasible IPs in [18], [19], [20], [21]. Further,
in [20] it was shown that the problem of determining the
minimum cost feasible IPs, given a system plant and an
input/output configuration, is NP-hard. In particular, when
we restrict the problem to one with a uniform cost on the
communication links, we obtain the problem of determining
sparsest feasible IPs, which is also known to be NP-hard.
Nonetheless, in [20] it was also shown that if the dynamics
matrix is irreducible then the minimum cost feasible IPs can
be determined by resorting to algorithms with polynomial
complexity (in the dimensions of the state, input and output).
In this paper, one of the goals is to provide insights on how
the conditions required to ensure feasibility contribute to the
hardness of the problem of determining the sparsest feasible
IPs, as well as the essential IPs. Finally, we notice that the
essential IPs provide new insights on how to obtain solutions
to the general minimum cost IP design, in the same lines
as [20], [22], [23], and to obtain resilient properties of the
closed-loop system with respect to a given IP.
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Some meaningful advances were recently achieved in
terms of determining the numerical gains to achieve desired
closed-loop system performance, given the existence of fea-
sible IPs, and accomplished by using convex optimization
tools [24]. More precisely, gains associated to so-called
quadratic invariant (QI) IPs can be determined using convex
optimization tools [25], [26]; see also [7] for a review
about recent developments. Recently, these results were also
extended to enforcing sparsity in the IP [27], as well as part
of a co-design problem with input and output selection [28]
to ensure that the IP associated with the communication
between different decision-makers is QI, allowing for the
design of the corresponding gain by resorting to convex
optimization tools. Alternatively, by also resorting to convex
optimization tools, several other sparsity-promoting design
of IPs were suggested in [29], [30].

The main contributions of this paper are threefold: (i)
we provide several necessary and sufficient conditions to
verify whether an information pattern is essential or not; (ii)
we show that the problem of determining essential feasible
information patterns is NP-hard; and (iii) we provide a set of
strategies that, given an essential information pattern, enable
us to determine a collection of essential information patterns.

The rest of the paper is organized as follows. In Section II,
we provide the formal problem statement. Section III reviews
some concepts and introduces results in structural systems
theory and computational complexity. Subsequently, in Sec-
tion IV, we present the main technical results (due to space
constraints, the proofs of the main theorems are omitted
and can be read in the preprint version [31]), followed
by an illustrative example in Section V. Conclusions and
discussions on further research are presented in Section VI.

II. PROBLEM STATEMENT

Consider a linear time-invariant (LTI) system described by

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (1)

where x ∈ Rn, u ∈ Rp and y ∈ Rm are the state, input and
output vectors, respectively.

In the sequel, we identify the system in (1) with the
tuple (A,B,C). In many real world scenarios, specially
in large-scale systems, it is often the case that the exact
values of the non-zero parameters of the plant matrices are
unknown, or that these may change over time. To circumvent
this problem, in this paper we adopt the framework of
structural systems [14]. To this end, we let Ā ∈ {0, 1}n×n,
B̄ ∈ {0, 1}n×p and C̄ ∈ {0, 1}m×n be the binary matrices
that represent the structural patterns (location of zeros and
non-zeros) of A,B, and C, respectively. We then focus on
properties of all systems, where the plant matrices have these
sparsity patterns (Ā, B̄, C̄) which we refer to as a structural
system.

We thus consider the design of information patterns K̄ ∈
{0, 1}p×m, where K̄i,j = 1 if the measurements from output
j are available by actuator i, and zero otherwise. These
patterns induce a sparsity on the static output feedback gains
K ∈ Rp×m, with u(t) = Ky(t) in (1), that leads to a closed-
loop system, which we refer to as (A,B,K,C).

In this setting, a feasible information pattern K̄ is one that
ensures that the closed-loop system has no fixed modes [4].
To this end, given a matrix M̄ ∈ {0, 1}m×n, denote by
[M̄ ], the set {M ∈ Rm×n : Mi,j = 0 if M̄ij = 0}.
The set of fixed modes of the closed-loop system (1) with
respect to (w.r.t.) the information pattern K̄ is given by
σK̄(A,B,C) =

⋂
K∈[K̄] σ(A+BKC), where σ(M) denotes

the set of eigenvalues of the matrix M , further if σK̄ ⊂ W ,
for a non-empty open setW ⊂ C, which is symmetric about
the real axis, then there exists a gain K ∈ [K̄] such that all
the eigenvalues of the closed-loop system matrix A+BKC
are in W (see [4]).

Hereafter, we consider the notion of structural fixed modes
(SFMs) introduced in [32], which, essentially, are the fixed
modes that arise from the structural pattern of a system. More
concretely, a structural LTI system (Ā, B̄, C̄) is said to have
SFMs w.r.t. an information pattern K̄, which we refer to as
(Ā, B̄, K̄, C̄), if for all A ∈ [Ā], B ∈ [B̄], C ∈ [C̄], we have
σK̄(A,B,C) 6= ∅.

Conversely, a structural system (Ā, B̄, K̄, C̄) has no
SFMs, if there exists at least one instantiation A ∈ [Ā], B ∈
[B̄], C ∈ [C̄] which has no fixed modes (i.e., σK̄(A,B,C) =
∅). In this latter case, it may be shown (see [15]) that almost
all closed loop systems in the sparsity class (Ā, B̄, K̄, C̄)
have no fixed modes, and, hence, allow pole-placement
arbitrarily close to any pre-specified (symmetrical about the
real axis) set of eigenvalues by a static output feedback with
the sparsity of K̄.

In summary, we choose the non-existence of SFMs as
our design criterion for the structure K̄. Further, we say
that M̄ ′ is a (strict) sub-pattern of M̄ , which we write
M̄ ′ < M̄ if [M̄ ′] ( [M̄ ]. Therefore, we aim at computing
the essential feasible information patterns, i.e., information
patterns K̄ such that any K̄ ′ with K̄ ′ < K̄, implies that
(Ā, B̄, K̄ ′, C̄) has SFMs, i.e., is unfeasible. Formally, we
explore the following problem:

P1: Let Ā ∈ {0, 1}n×n, B̄ ∈ {0, 1}n×p and C̄ ∈
{0, 1}m×n correspond to the dynamics, input and output
matrices, respectively. Determine the essential feasible in-
formation patterns K̄, that is, K̄ such that (Ā, B̄, K̄, C̄) has
no SFMs and there exists no K̄ ′ such that K̄ ′ < K̄ and
(Ā, B̄, K̄ ′, C̄) has no SFMs. �

Note that a characterization of the essential information
feasible patterns yields a characterization of all feasible
information patterns, since any feasible information pattern
K̄ must have K̄ ′ ≤ K̄ for some essential feasible information
pattern K̄ ′. Further note that there is a particularly interesting
class of essential feasible information patterns which are
the sparsest feasible information patterns correspond to the
feasible information patterns that have the lowest number of
non-zero entries.

III. PRELIMINARIES AND TERMINOLOGY

In this section, we review some basic concepts of structural
systems and graph theory, followed by concepts of computa-
tional complexity. In addition, we introduce terminology that
will be employed throughout the rest of paper.

Consider a linear time-invariant (LTI) system (1). In order
to perform structural analysis efficiently, it is customary to
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associate to (1) a directed graph (digraph) D = (V, E), in
which V denotes the set of vertices and E ⊆ V×V the set of
edges, where (vj , vi) represents an edge from the vertex vj
to vertex vi. To this end, let Ā ∈ {0, 1}n×n, B̄ ∈ {0, 1}n×p
and C̄ ∈ {0, 1}m×n be binary matrices that represent the
sparsity patterns of A, B and C respectively. Denote by X =
{x1, . . . , xn}, U = {u1, . . . , up} and Y = {y1, . . . , ym} the
sets of state, input and output vertices, respectively. And by
EX ,X = {(xi, xj) : Āji 6= 0}, EU,X = {(uj , xi) : B̄ij 6=
0}, and EX ,Y = {(xi, yj) : C̄ji 6= 0} the edges between
the sets in subscript; further, given an information pattern
K̄ ∈ {0, 1}p×m, describing output feedback in the inputs,
we also have EY,U = {(yj , ui) : K̄ij 6= 0}. In addition, we
introduce state digraph D(Ā) = (X , EX ,X ), and the closed-
loop system digraph D(Ā, B̄, K̄, C̄) = (X ∪U ∪Y, EX ,X ∪
EU,X ∪ EX ,Y ∪ EY,U ).

A directed path between the vertices v1 and vk is a
sequence of edges {(v1, v2), (v2, v3), . . . , (vk−1, vk)}. If all
the vertices in a directed path are different, then the path is
said to be an elementary path. A cycle is an elementary path
from v1 to vk, with an edge from vk to v1.

We also require the following graph-theoretic notions [33]:
A digraph is strongly connected if there exists a directed path
between any two vertices. A strongly connected component
(SCC) is a maximal subgraph DS = (VS , ES) of D, i.e.,
a graph comprising a set of vertices V ′ ⊆ V and of edges
E ′ ⊆ E , such that for every u, v ∈ VS there exist paths from
u to v and is maximal with this property (i.e., any G such
that DS ⊆ G ( D, is not strongly connected).

Since the SCCs of a digraph D = (V, E) are uniquely
determined, we can regard each SCC as a virtual node. By
doing so we build a directed acyclic graph (DAG), i.e., a
directed graph with no cycles, in which a directed edge
exists between two virtual nodes representing two SCCs if
and only if there exists an edge between two vertices in
the corresponding SCCs in the original digraph. We call
this, the DAG representation of the graph, which can be
computed efficiently in O(|V| + |E|) [33]. We can further
classify the SCCs with respect to the existence of incoming
and/or outgoing edges as follows.

Definition 1 ([18]): An SCC is said to be linked if it has
at least one incoming or outgoing edge from another SCC.
In particular, an SCC is non-top linked if it has no incoming
edges from another SCC, and non-bottom linked if it has no
outgoing edges to another SCC. �

For any digraph D = (V, E) and any two vertex sets
S1,S2 ⊂ V we define the bipartite graph B(S1,S2, ES1,S2)
whose vertex set is given by S1 ∪ S2 and the edge set
ES1,S2 = E∩(S1×S2). We call the bipartite graph B(V,V, E)
the bipartite graph associated with D(V, E). In the sequel we
will make heavy use of the state bipartite graph B(Ā) ≡
B(X ,X , EX ,X ), which is the bipartite graph associated with
the state digraph D(Ā) = (X , EX ,X ).

Given B(S1,S2, ES1,S2), a matching M corresponds to a
subset of edges in ES1,S2 so that no two edges have a vertex
in common, (i.e., given edges e = (s1, s2) and e′ = (s′1, s

′
2)

with s1, s
′
1 ∈ S1 and s2, s

′
2 ∈ S2, e, e′ ∈M only if s1 6= s′1

and s2 6= s′2). A maximum matching M∗ is a matching

M that has the largest number of edges among all possible
matchings.

In addition, given two binary matrices P and P ′, we define
their sum P +P ′, where we replace the binary sum with the
entrywise or operation.

We call the vertices in S1 and S2 belonging to an edge in
M∗, the matched vertices w.r.t. M∗, and unmatched vertices
otherwise. For ease of referencing, in the sequel, the term
right-unmatched vertices associated with the matching M of
B(S1,S2, ES1,S2) (not necessarily maximum), will refer to
those vertices in S2 that do not belong to a matching edge
in M , dually a vertex from S1 that does not belong to an
edge in M is called a left-unmatched vertex.

The following result translates a maximum matching of
the state bipartite graph representation into the state digraph.

Lemma 1 (Maximum Matching Decomposition [18]):
Consider the digraph D(Ā) = (X , EX ,X ) and let M∗ be
a maximum matching associated with the bipartite graph
B(X ,X , EX ,X ). Then, the digraph D = (X ,M∗) comprises
a disjoint union of cycles and elementary paths, from the
right-unmatched vertices to the left-unmatched vertices of
M∗, that span D(Ā) (by definition an isolated vertex is
regarded as an elementary path with no edges). Moreover,
such a decomposition is minimal, in the sense that no other
spanning subgraph decomposition of D(Ā) into elementary
paths and cycles contains strictly fewer elementary paths. �

Now, concerning the notion of SFMs introduced in Sec-
tion II for the formulation of P1, we will make heavy use
of the following graph-theoretic conditions that ensure the
absence of SFMs.

Theorem 1 ([17]): The structural system (Ā, B̄, C̄) asso-
ciated with (1) has no SFMs w.r.t. an information pattern K̄,
if and only if both the following conditions hold:

(a) in D(Ā, B̄, K̄, C̄) = (X ∪U∪Y, EX ,X ∪EX ,Y∪EU,X ∪
EY,U ), each state vertex x ∈ X is contained in an SCC which
includes an edge of EY,U ;

(b) there exists a finite disjoint union of cycles Ck =
(Vk, Ek) (subgraph of D(Ā, B̄, K̄, C̄)) with k ∈ N such that
X ⊂

⋃k
j=1 Vj . �

Finally, a (computational) problem is said to be reducible
in polynomial time to another if there exists a procedure
transforming a solution of the former in one of the latter
resorting to a number of elementary operations which is
bounded by a polynomial on the size of its inputs. Such re-
ductions are useful in determining the complexity class [34]
a problem belongs to. For instance, recall that a decision
problem P in NP (i.e., the class of problems for which a
solution can be verified in polynomial time) is said to be
NP-complete if all other decision problems in NP can be
polynomially reduced to P [34]. The set of NP-complete
problems is referred to as the NP-complete class.

The optimization problems, whose associated decision
problems are NP-complete are called NP-hard, and they
form the NP-hard class. A typical result used to show the
computational complexity of a problem is given next.

Lemma 2 ([34]): If a problem PA is NP-hard, PB is in
NP and PA is reducible in polynomial time to PB , then PB
is NP-hard. �
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Concretely, we will make use the decomposition problem,
an NP-hard problem that is formulated as follows [35]:

Decomposition Problem: Given a directed acyclic graph
D = (V, E). Determine (if possible) a partition of V in two
sets, say Γ1 and Γ2 such that:

(i) there are no edges leading from Γ2 to Γ1, and
(ii) if v ∈ Γi, for i ∈ {1, 2}, there is a source-to-sink path

in D passing through v containing only vertices of Γi, where
a vertex is a source if it has no incoming edges and a sink
if it has no outgoing edges. �

The decomposition problem has been shown to be a
computationally hard, as stated in the following theorem:

Theorem 2 ([35]): The problem of determining a partition
as in the decomposition problem is NP-hard. �

Further, to clarify the distinction between NP-hard and
NP-complete problems, we remark that a decision problem
associated to the decomposition problem can be described
as follows: for an arbitrary digraph D is there a partition of
the set of vertices into two disjoint non-empty subsets Γ1,Γ2

satisfying conditions (i) and (ii).

IV. MAIN RESULTS
In this section, we present the main results of this paper.

We begin by addressing the problem of characterizing the
essential information patterns by providing a description of
those satisfying condition (b) of Theorem 1. To this end,
Theorem 3 and Corollary 1 summarize the obtained results.
Secondly, in Theorem 4, we consider the satisfiability of
condition (a) of Theorem 1. Next, in Theorem 5 we show
that the problem of finding essential feasible information
patterns is in general NP-hard, despite of the previous
theorems hinting at efficient (polynomial in the dimension
of the state) algorithms to find feedback patterns that satisfy
conditions (a) and (b) of Theorem 1 separately. Finally, we
describe in Lemma 5 and Lemma 6, methods by which we
can obtain essential information patterns from pre-existing
essential information patterns.

We thus begin by defining index- and sequential-pairing,
that will be used throughout the remainder of the paper
in order to describe how the communication from a set of
sensors I to a set of actuators J should be setup.

Definition 2 (Index-pairing): Given two sets of indices
I = {i1, . . . , in} and J = {j1, . . . , jk}, we define an index
pairing 〈I,J 〉 as being a maximum matching of the bipartite
graph B(I,J , I × J ). �

Definition 3 (Sequential-pairing): Consider two sets of
indices I = {i1, . . . , in} and J = {j1, . . . , jn}, and a
maximum matching M of the bipartite graph B(J , I, EJ ,I),
where EJ ,I ⊆ J × I. We denote by |I,J 〉M a sequential-
pairing induced by M , defined as follows:

|I,J 〉M =

( ⋃
l=2,...,k

{(il, jl−1)}

)
∪
{

(i1, jk)
}
,

where (jl, il) ∈M , for l = 1, . . . , k. �
We note that the sequential-pairing consists in the collection
of edges such that M ∪ |I,J 〉M forms a cycle.

Now, we begin by providing necessary and sufficient
conditions to ensure Theorem 1–(b).

Theorem 3: Let D(Ā) = (X , EX ,X ) be the state digraph
and B(Ā) the associated state bipartite graph. In addition, let

the input and output matrices be given by B̄ = In and C̄ =
In, respectively. The following statements are equivalent:

(i) The digraph D(Ā, In, K̄, In) satisfies Theorem 1−(b);
(ii) There exists a matching M of B(Ā), with a set of

right-unmatched vertices UR = {xjR : jR ∈ JR} and left-
unmatched vertices UL = {xjL : jL ∈ JL}, where JR and
JL correspond to the indices of right- and left-unmatched
vertices, respectively, such that K̄jR,jL = 1 for all (jR, jL)
in some index-pairing 〈JR,JL〉 and is zero otherwise. �

The sparsest information pattern satisfying Theorem 1–
(b) can be obtained, as corollary to Theorem 3, as described
next.

Corollary 1: Let D(Ā) = (X , EX ,X ) be the state digraph
and B(Ā) the associated state bipartite graph. In addition, let
the input and output matrices be given by B̄ = In and C̄ =
In, respectively. The following statements are equivalent:

(i) The digraph D(Ā, In, K̄∗, In), where K̄∗ is a sparsest
information pattern, satisfies Theorem 1−(b);

(ii) There exists a maximum matching M∗ of B(Ā),
with set of right-unmatched vertices U∗R and left-unmatched
vertices U∗L, where J ∗R and J ∗L are the indices of the state
variables comprised in each, respectively, such that K̄jR,jL =
1 if (jR, jL) ∈ 〈J ∗R,J ∗L〉 and zero otherwise. �

Now, we focus on the problem of determining the feedback
patterns K̄ satisfying Theorem 1–(a). Towards this goal,
consider the following auxiliary lemma.

Lemma 3: Consider (Ā, B̄, C̄) to be a structural system
with B̄ = C̄ = In, and D(Ā) the state digraph. Fur-
ther, let the non-top linked SCCs of D(Ā) be denoted
by N T

1 , . . . ,N T
βT

, and the non-bottom linked SCCs by
NB

1 , . . . ,NB
βB

. Then, provided βT ≤ βB (resp. βB ≤ βT ),
there exists a information pattern K̄ with βT (resp. βB)
nonzero entries, so that the digraph D(Ā, B̄, K̄, C̄) has a
unique non-top (resp. non-bottom) linked SCC and |βB−βT |
non-bottom (resp. non-top) linked SCCs. �

Subsequently, we have the following result regarding the
information patterns K̄ satisfying Theorem 1–(a).

Theorem 4: Consider (Ā, B̄, C̄) a structural system with
B̄ = C̄ = In, and D(Ā) be the state digraph. Further, let the
non-top linked SCCs of D(Ā) be denoted by N T

1 , . . . ,N T
βT

,
and the non-bottom linked SCCs by NB

1 , . . . ,NB
βB

. Then,
provided βT ≤ βB (respectively βB ≤ βT ) there exists a
information pattern K̄ with βB (respectively βT ) nonzero
entries, so that D(Ā, B̄, K̄, C̄) satisfies Theorem 1–(a).
Further, this information pattern has the lowest number of
non-zero entries in order to satisfy Theorem 1–(a). �

Remark 1: First, all the tools required to obtain Theo-
rem 3, Corollary 1 and Theorem 4, can be implemented by
resorting to algorithms with polynomial complexity (in the
dimensions of the state, input and output), see Section III.
Secondly, in all the results we gave so far, where condition
(a) in Theorem 1 is intended, we aimed to obtain a closed-
loop digraph comprising a single SCC by producing infor-
mation patterns with feedback links from outputs to inputs
located in non-bottom and non-top linked SCCs, respectively.
We chose this method, because the class of information
patterns that satisfy condition (a) of Theorem 1 is rather
unruly, as illustrated in Figure 1. However, for state digraphs
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comprising the same number of non-top and non-bottom
linked SCCs, all sparsest information patterns that satisfy the
aforementioned condition, are of the previously mentioned
form. �

(a) (b) (c)

Fig. 1: In this figure, we present several information patterns that
guarantee the satisfiability of Theorem 1–(a), where we represent
the SCCs in dashed circles, the non-top linked SCCs are depicted
in green and the non-bottom linked SCCs are depicted in blue,
further the feedback edges are depicted in red. In (a) we present
the structural pattern obtained from Corollary 4, in (b) we present
an alternative information pattern that also produces a single SCC,
and in (c) we present a information pattern that comprises three
SCCs while still satisfying Theorem 1−(a).

The main reason for pursuiting strategies as emphasized
in Remark 1, when we design K̄ to satisfy condition (a), is
closely related to the next theorem (Theorem 5) that is based
in the next lemma.

Lemma 4: The problem of determining a sparsest infor-
mation pattern K̄∗ such that (Ā, B̄, K̄∗, C̄), with B̄ = C̄ =
In, satisfies condition (a) of Theorem 1 and D(Ā, B̄ =
In, K̄∗, C̄ = In) has two SCCs comprising state variables
is NP-hard. �

In fact, noticing that the problem in Lemma 4 is an
instance of a more general problem with arbitrary input and
output matrices, and the fact that the sparsest information
patterns are essential information patterns, we obtain the
following result.

Theorem 5: The problem of determining an essential in-
formation pattern K̄∗ such that (Ā, B̄, K̄∗, C̄) satisfies the
conditions in Theorem 1 is NP-hard. �

Motivated by Theorem 5, and to partially address P1 in
an efficient manner, we have the following lemmas.

Lemma 5: Let D(Ā, In, K̄, In) satisfy Theorem 1−(a).
Then, for some i, j such that K̄i,j = 1, let K̄ ′ be such
that K̄ ′i,j = 0, K̄ ′i′,j = 1 and K̄ ′i,j′ = 1 for some i′, j′ such
that xi′ and xj′ belong to the same SCC, and K̄ ′l,t = K̄l,t

for every other pair of indices l, t. The resulting closed-loop
system digraph D(Ā, In, K̄ ′, In) satisfies Theorem 1−(a). �

In the following, to avoid cumbersome notation,
we will denote (x1, x2, x3, . . . , xk) to mean the path
{(x1, x2), (x2, x3), . . . , (xk−1, xk)}; and, if x1 = xk we
obtain a cycle (x1, x2, x3, . . . , xk, x1).

Lemma 6: Let K̄ be an information pattern such that
D(Ā, In, K̄, In) satisfies Theorem 1−(b). In addition, let C
represent the disjoint union of cycles prescribed by Theo-
rem 1−(b). Furthermore, note that C can be partitioned into
two sets Cf , corresponding to those comprising feedback
links, and Cs, corresponding to those comprising only state
variables. Given a cycle (ui1 , xi1 , xi2 , . . . , xik , yik , ui1) ∈
Cf , then for any l = 1, . . . , k, the information pattern K̄l

such that K̄l
i1,ik

= 0, K̄l
i1,il

= K̄l
il+1,il

= 1 and K̄l
r,t =

K̄r,t for all other values of r, t, satisfies the condition of
Theorem 1–(b). �

Remark 2: Note that Lemma 5 and Lemma 6 describe
strategies by which one can design feasible information
patterns given a feasible information patterns. In particu-
lar, given an essential information pattern, we can obtain
another essential feasible information pattern. Furthermore,
both strategies presented can be efficiently computed, i.e.,
resorting to polynomially complexity (in the dimensions of
the state, input and output) algorithms. �

V. ILLUSTRATIVE EXAMPLES

In Figure 2, for a given digraph D(Ā), we illustrate the
use of Lemma 5 that can be interpreted as follows. Given an
information pattern K̄ satisfying Theorem 1–(a), with K̄1,4

and two states x3 and x2 in the same SCC of D(Ā), we
can remove the feedback edge (y4, u1) and consider instead
two feedback edges (y4, u3) and (y2, u1). The closed-loop
digraph can be seen to have the same number of SCCs
comprising state vertices, and still satisfies Theorem 1–
(a). Thus, provided that the starting feedback pattern was
essential, this method allows us to determine other essential
information patterns that are not the sparsest.

(a)

u1

x1

y1

u2

x2

y2

u3

x3

y3

y4

x4

u4

K̄ =

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0



K̄ ′ =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



(b)

u1

x1

y1 u2

x2

y2

u3

x3

y3

y4

x4

u4

Fig. 2: The SCCs of the state digraph D(Ā) are depicted within
grey dashed boxes, whereas the SCCs of the closed-loop digraph
containing state vertices are depicted within the red dashed boxes.
The state, input and output vertices are depicted in black, blue and
green, respectively. In addition, the feedback links from the outputs
to the inputs are depicted in red, and are related with the non-zero
entries of the information patterns presented in the right-hand side.
In (a) we present the closed-loop digraph satisfying the assumptions
in Lemma 5, and in (b) we present one possible conclusion from it.

(a)

u1

x1

y1

u2

x2

y2

u3

x3

y3

y4

x4

u4

(b)
u1

x1

y1 u2

x2

y2

u3

x3

y3

y4

x4

u4

K̄ =

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0



K̄ ′ =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



Fig. 3: Adopting the same graphical representation explained in
the caption of Figure 3, in (a) we present the closed-loop digraph
satisfying the assumptions in Lemma 6, and in (b) one possible
conclusion from it.
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Similarly, in Figure 3 we illustrate the use of Lemma 6
to be interpreted as follows. Once again, given K̄ satisfying
Theorem 1–(b), with K̄1,4 = 1 and given two consecutive
vertices x2 and x3 in the cycle C comprising (y4, u1) we
can split C into two cycles C1 and C2, where C1 comprises
the edge (y2, u1) and C2 comprises (y4, u3). Once again,
provided that the initial information pattern is essential and
satisfies Theorem 1–(b), (e.g. the sparsest, which can be
obtained by Corollary 1) then a new essential information
pattern is formed satisfying Theorem 1–(b).

VI. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we provided several necessary and sufficient
conditions to verify whether an information pattern is an
essential pattern. In addition, we showed that the problem
of determining essential feasible information patterns is NP-
hard. Finally, we provide a set of strategies that, given
an essential information pattern, enable us to determine a
collection of essential information patterns.

The results provide new insights on schemes that can
be used to approximate minimum cost feasible information
patterns, where arbitrary costs are attributed to the com-
munication links. In addition, the characterization of the
essential patterns provide insights on the resilience properties
of closed-loop systems, with respect to changes in the
information pattern. Both of these problems will be studied
as part of future research.
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feedback gains via the alternating direction method of multipliers,”
IEEE Transactions on Automatic Control, vol. 58, no. 9, pp. 2426–
2431, September 2013.

[31] J. F. Carvalho, S. Pequito, A. P. Aguiar, S. Kar, and G. J. Pappas,
“Static output feedback: On essential feasible information patterns,”
ArXiv, 2015. [Online]. Available: http://arxiv.org/abs/1509.02383

[32] C. H. Papadimitriou and J. Tsitsiklis, “A simple criterion for struc-
turally fixed modes,” Systems & Control Letters, vol. 4, no. 6, pp. 333
– 337, 1984.

[33] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[34] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1979.

[35] R. Tarjan, “Input-output decomposition of dynamic systems is NP-
complete,” IEEE Transactions on Automatic Control, vol. 29, no. 9,
pp. 863 – 864, sep 1984.

3994


