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Abstract— In this paper we look at the problem of peak
power reduction for buildings with electric radiant floor heating
systems. Uncoordinated operation of a multi-zone radiant floor
heating system can result in temporally correlated electricity
demand surges or peaks in the building’s electricity consump-
tion. As peak power prices are 200-400 times that of the nominal
rate, this uncoordinated activity can result in high electricity
costs and expensive system operation. We have previously
presented green scheduling as an approach for reducing the
aggregate peak power consumption in buildings while ensuring
that indoor thermal comfort is always maintained. This paper
extends the theoretical results for general affine dynamical
systems and applies them to electric radiant floor heating
systems. The potential of the proposed method in reducing the
peak power demand is demonstrated for a small-scale system
through simulation in EnergyPlus and for a large-scale system
through simulation in Matlab.

I. INTRODUCTION

Commercial electricity customers are often subject to
peak-demand based electricity pricing [1]. In this pricing
policy, a customer is charged not only for the amount
of electricity it has consumed but also for its maximum
demand over the billing cycle. The unit price of the peak
demand charge is usually very high, up to 240 times in some
cases [2] and even more. This is to discourage the use of
electricity under peak load conditions since they can cause
issues such as low quality of service and service disruptions,
which affect the reliability of the grid. High peak loads
also lead to a higher cost of production and distribution of
electricity. Therefore, peaks in electricity usage are inefficient
and expensive for both suppliers and customers.

In this paper we look at the problem of peak demand
reduction for buildings with electric radiant floor heating
systems. Uncoordinated operation of a multi-zone radiant
floor heating system in a building can result in temporally
correlated electricity demand surges (or peaks) leading to
high electricity cost under the peak-demand pricing policy.

Radiant floor heating systems serve as an alternative
to the conventional forced-air heating, ventilation and air
conditioning (HVAC) systems for buildings. Nowadays, these
systems are widely used in both commercial and residential
buildings in Korea, Germany, Austria, Denmark [3] and in
some parts of the United States [4]. The benefits of radiant
systems over forced-air HVAC systems for US commercial
buildings has been studied in [5].

There exist several different approaches to balance the
power consumption in buildings and avoid peaks, e.g., by
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load shifting and load shedding [6], [7]. However, they
operate on coarse grained time scales and do not guarantee
any thermal comfort. Another popular approach to energy
efficient control for commercial buildings and data centers is
model predictive control (MPC) ([8], [9]). In [8] the authors
investigated MPC for thermal energy storage in building
cooling systems. Peak electricity demand reduction by MPC
with real-time pricing was considered in [9]. In [10] MPC
is used for achieving energy savings for a hydronic central
heating system.

Several improvements over the on/off control for radiant
systems have been proposed in literature ([11], [12], [13],
[14]). Predictive control methods were shown in [11], [12]
to improve the comfort of radiant systems. A two-parameter
switching control strategy was described in [13] and was
shown to achieve better temperature regulation than on/off
control. In [14], three different strategies for control of multi-
zone hydronic radiant systems were compared. In all of the
above work, the focus has been on improving the thermal
comfort of radiant floor systems by achieving better temper-
ature regulation. Mostly, the simulations and experimental
tests have been limited to a single zone. For the few papers
that deal with radiant systems in multiple zones ([12], [14]),
the problem of reducing the peak power, which is the focus
of our work, has not been addressed.

In our recent paper [15] we proposed green scheduling as
an approach to schedule the building control systems and
reduce the aggregate peak power demand while ensuring
that indoor thermal comfort is always maintained. However,
the results were developed for simple zone models with no
thermal interactions between the zones. The contributions of
this paper, compared to our previous work [15], are threefold:

1) We extend the schedulability analysis and scheduling
synthesis for general affine dynamical systems with
inter-system interactions, and apply them to electric
radiant floor heating systems;

2) We use a more accurate system model which incorpo-
rates the thermal dynamics of radiant heating systems,
the thermal dynamics of zones, and the thermal inter-
actions between zones;

3) We demonstrate the potential of our approach in re-
ducing the peak demand through simulations in Ener-
gyPlus for realistic building radiant system models.

This paper is organized as follows. First, we present an
overview of radiant heating systems and their dynamics, and
formulate the peak demand reduction problem in Section II.
In Section III the generalized green scheduling problem is
discussed followed by the schedulability analysis. A method
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for synthesizing periodic schedules for the system is pro-
posed in Section IV. Section V describes two simulation
case studies and shows the effectiveness of our method for
reducing the peak power consumption. Finally, we conclude
the paper with a discussion in Section VI.

II. RADIANT FLOOR HEATING SYSTEMS
A conventional forced-air HVAC system uses the flow of

air to provide thermal comfort within a conditioned space.
HVAC systems rely on ductwork, vents, etc. as means of
air distribution and use air handlers, filters, blowers, heat
exchangers, and various controls to regulate the temperature
and flow of air entering a space.

On the other hand, radiant heating systems involve sup-
plying heat directly to the floor or to panels in the walls or
ceiling of a house. A radiant floor heating system works by
warming up the floor surface which then slowly radiates heat
upward into the living space, rather than blowing around the
heated air. This natural heat transfer is both more comfortable
and energy efficient [3]. Furthermore, radiant heating systems
also minimize drafts and dust movements, thereby providing
a clean and quiet operation [16].

Modern floor heating systems use either electrical resis-
tance elements or fluid flowing in pipes to heat the floor
[16]. Hydronic radiant floor systems pump hot water through
tubing laid in a pattern underneath the floor. Electric radiant
floors typically consist of electric cables (heating elements)
built into the floor. Whether cables or tubing, the operation
of electric and hydronic radiant systems in floors is the
same. Cables or tubing are embedded within the solid floor
having a high thermal capacity. If the floor’s thermal mass is
large enough, the thermal energy stored in it keeps the space
conditioned for several hours.
A. Radiant floor model

We consider m > 1 zones. Each zone i is equipped with
an electric radiant floor heating system with a maximum
power rating of qi (kW). The actuation of each radiant system
is assumed to be on-off, i.e., it can be either switched on,
when it provides heating power qi, or switched off, when it
provides no heating power. Thus the control input to zone i
is a binary variable ui ∈ {0, 1}, where ui = 0 corresponds to
the off state and ui = 1 the on state. The floor of each zone
consists of a slab of high thermal capacity below which the
radiant heat source is embedded. The dynamics of each zone
is modeled using an RC network model as shown in Figure 1.
The list of parameters in the model is given in Table I. Each
zone i has 4 nodes: Tg,i is the ground temperature, Tsb,i
the temperature of the bottom surface of the slab, Tst,i the
temperature of the top surface of the slab, and Ti the zone
air temperature (the air in the zone is assumed to be fully
mixed). It is assumed that the slab is uniformly heated and
there is no lateral temperature difference or heat transfer. For
each zone i, the heat transfer between the ground, the slab
and the zone is modelled using equations of one dimensional
heat conduction [17]:
Cs,i

dTsb,i

dt =Kg,i(Tg,i−Tsb,i)+Ks,i(Tst,i−Tsb,i)+qiui (1)

Cs,i
dTst,i

dt =Ka,i(Ti − Tst,i) +Ks,i(Tsb,i − Tst,i). (2)
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Fig. 1. RC network model for an electric floor heating system for 2 zones.
TABLE I

LIST OF PARAMETERS

Kg,i conduction coefficient between ground and slab (kW/K)
Ka,i convection coefficient between the slab and air (kW/K)
Ks,i thermal resistance of the slab (kW/K)
Cs,i thermal capacitance of the slab (kJ/K)
Ci thermal capacitance of zone i (kJ/K)
Ki thermal conductance between zone i and outside air (kW/K)
Kij thermal conductance between zone i and zone j (kW/K)

B. Zone model
Let Ta be the ambient air temperature (◦C), which is the

same for all zones. For zone i, let Qhg,i be its internal heat
gain (kW) (from its occupants, equipment, lighting, etc.),
and Qsol,i be the heat gain due to solar radiation (kW). We
consider Ta, Qhg,i and Qsol,i as disturbances. From the law
of conservation of energy, we have for each zone i

Ci
dTi(t)
dt = Ki (Ta(t)− Ti(t))+

∑
j 6=iKij (Tj(t)− Ti(t))

+Ka,i(Tst,i − Ti) +Qhg,i(t) +Qsol,i(t) (3)

where Ci, Ki, and Kij are parameters given in Table I.
The differential equations (1) to (3) of the radiant floor

model and the zone model for all the zones can be combined
to give a state-space model of the entire system:

ẋ(t) = Ax(t) +Bu(t) +Hw(t), y(t) = Cx(t). (4)

Here, the state vector x consists of the node temperatures for
all zones, i.e., x = [Tsb,1, Tst,1, T1, . . . , Tsb,m, Tst,m, Tm]T ;
u = [u1, . . . , um]T is the binary control input vector to the
zones; w = [Ta, Qhg,1, Qsol,1, . . . , Qhg,m, Qsol,m]T is the
vector of all disturbances; and y = [T1, . . . , Tm]T is the
output vector of all zone air temperatures. It is straightfor-
ward to see that the state matrix A is a strictly diagonally
dominant matrix with negative diagonal entries. Therefore A
is Hurwitz [18] and the system is always stable.
C. Peak demand reduction problem

At any time t, the aggregate demand Q of all radiant heat-
ing systems is the sum of their individual power demands:
Q(t) =

∑m
i=1 qiui(t). As mentioned in Section I, reducing

the peak demand over the billing cycle helps save energy as
well as the highly priced demand charge. Thus, the objective
of peak demand reduction is to minimize, or reduce, the peak
demand max0≤t≤tf Q(t). However, it must also maintain the
indoor thermal comfort in each zone, which requires that the
air temperature Ti in zone i should be in a range [li, hi] (◦C),
e.g., between 22 ◦C and 24 ◦C. Therefore, the peak demand
reduction problem can be formally stated as follows.
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Peak demand reduction problem: Compute control input
u(t), 0 ≤ t ≤ tf , for system (4) to minimize the peak demand
while maintaining thermal comfort in each zone.

In [15], we described green scheduling to reduce the
peak demand of a large number of heating systems. This
was achieved by coordinating the individual systems un-
der a constrained peak while ensuring that custom climate
conditions are facilitated. In particular, the peak demand is
restricted by requiring that at most k of the m actuators, for
1 ≤ k ≤ m, can be on simultaneously. Applying the green
scheduling approach to peak demand reduction for radiant
heating systems results in the following problem.
Green scheduling problem for radiant heating systems:
Given a peak constraint 1 ≤ k ≤ m, compute control input
u(t), 0 ≤ t ≤ tf , for system (4) so that

∑m
i=1 ui(t) ≤ k at

all time while maintaining thermal comfort in each zone.
In the next section, we generalize the results in [15] to

affine dynamical systems that capture the radiant system
model (4). A procedure to synthesize periodic control inputs
for the green scheduling problem is presented in Section IV.

III. GREEN SCHEDULING FOR AFFINE SYSTEMS

A. System model for green scheduling
We first generalize the state-space model (4) of radiant

heating systems for green scheduling. The disturbances w
in (4) usually vary slowly. Thus, we can assume constant
nominal values w for w, and adjust the model for green
scheduling in real-time based on either prediction of dis-
turbances (e.g., weather forecast, occupancy schedule) or
monitoring of the environment. Therefore the system model
for green scheduling is an affine dynamical model:

ẋ(t) = Ax(t) + (Bu(t) +B0) , y(t) = Cx(t). (5)

Here, x ∈ Rn are the states, u ∈ {0, 1}m the binary
control inputs, and y ∈ Rp the outputs. Matrix A ∈ Rn×n
is Hurwitz. Vector B0 ∈ Rn corresponds to the nominal
disturbances: from (4) we have B0 = Hw.

Operation specifications, e.g., thermal comfort, require that
the outputs y should be in a safe set Safe ⊆ Rp. Safe is
usually a hyper-rectangle of the form [l1, h1]×· · ·× [lp, hp],
but it can also be any convex set.

A control signal u(·) for (5) can be thought of as a
schedule that switches on-off and coordinates the individual
systems. In this paper, we will use the terms control signal
and schedule interchangeably for u(·). If u(·) drives the
system’s outputs to Safe and maintains them in that set then
the system is said to be safe and u(·) is a safe schedule. More
precisely, the system is safe with u(·) if for any initial state
x(0), there exists a finite time τ ≥ 0 such that y(t) ∈ Safe

for all t ≥ τ . In the green scheduling approach the actuators
ui are coordinated so that at any time, at most k of them,
for some given 1 ≤ k ≤ m, can be on simultaneously.
The system is said to be k-schedulable if there exists a safe
schedule u(·) such that

∑m
i=1 ui(t) ≤ k for all t ≥ 0.

Our previous analysis in [15] assumed that each individual
system is modeled by a single state variable (which is also
its output) and they are decoupled (no heat transfer between

zones) so that A is diagonal. This paper makes a major gen-
eralization by removing both restrictions, therefore making
the model capture the actual systems more accurately.
B. Schedulability analysis

A fundamental question of the green scheduling problem
is k-schedulability, that is on which conditions the system
is k-schedulable for a given k. The answer to this question
will allow us to find an appropriate peak constraint k. In
our previous work [15], k-schedulability conditions were
obtained for systems with simpler dynamics by showing the
existence of periodic control signals that satisfy the peak
constraint and drive the system to the safe set. Along the
same line, in this paper, we investigate periodic control
signals for system (5) to derive sufficient conditions for the
system to be k-schedulable.

A T -periodic control signal u, where T > 0, satisfies
u(t+ T ) = u(t) for all t ≥ 0. Define ηi = 1

T

∫ T
0
ui(s) ds ∈

[0, 1] for each control input i. Because u is T -periodic,
1
T

∫ t+T
t

ui(s) ds = ηi for all t ≥ 0. The value ηi is
called the utilization of control input i. The utilization vector
η ∈ [0, 1]m of all control inputs is defined by stacking their
individual utilizations, i.e., η = [η1, . . . , ηm]

T .
A sufficient schedulability condition can be stated in the

following theorem (for details, cf. our technical report [19]).
Here the notation int (Safe) denotes the interior of set Safe.

Theorem 1: If there exists η ∈ [0, 1]m such that:
1)
∑m
i=1 ηi ≤ k, and

2) −CA−1 (B0 +Bη) ∈ int (Safe),
then system (5) is k-schedulable.
A similar result was derived in [20] for scheduling LQR
controllers under resource constraints, however its objective
is performance bound while we consider safety in this paper.
C. Feasible peak constraint

Given system (5), it is usually of interest to find a feasible
peak constraint k because k is not known at the beginning.
From Theorem 1, the smallest peak constraint kmin can be
computed by minimizing

∑m
i=1 ηi subject to η ∈ [0, 1]m and

−CA−1 (B0 +Bη) ∈ int (Safe) , (6)

and letting kmin = d
∑m
i=1 ηie, where the notation dce

denotes the smallest integer not less than c. Any peak
constraint k ≥ kmin will be feasible. In practice, Safe is
usually a hypercube or a polytope, for which constraint (6)
becomes linear and the above optimization can be solved
efficiently [21].

IV. PERIODIC CONTROL SYNTHESIS
In this section, we present a procedure to design periodic

control u for system (5) that both satisfies a given feasible
peak constraint k and drives the system’s output to Safe.

A. Limit behavior under periodic control

It is shown in [19] that as t → ∞, the output trajectory
of (5) under periodic control converges to the limit cycle
ŷ(t) = y?+Cξ̂(t). Here, y? = −CA−1 (B0 +Bη) and ξ̂(t)
is the solution of the ordinary differential equation (ODE)

˙̂
ξ(t) = Aξ̂(t) +B (u(t)− η) , ξ̂(0) = Pξ(T ) (7)
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where P =
(
I − eAT

)−1
(the matrix inverse exists because

A is Hurwitz). Furthermore, ξ̂(t) is T -periodic. Therefore,
ŷ(t) is also T -periodic and can be computed numerically
using any available ODE solver.

B. Synthesize periodic control

In synthesizing periodic control for system (5), it is neces-
sary to ensure that the entire limit cycle ŷ(t) is inside Safe,
so that the system’s outputs are driven to and stay inside
Safe. It is usually desirable to construct a periodic control
signal u with the largest period T to minimize the switching
frequency. Once a feasible peak constraint k ≥ kmin is
chosen, this is achieved by solving the optimization:

maximizeη,T,u(·) T

subject to η ∈ [0, 1]m,
∑m
i=1 ηi ≤ k, T > 0

u(·) is T -periodic with utilization η∑m
i=1 ui(t) ≤ k, ∀0 ≤ t ≤ T

ŷ(t) ∈ Safe, ∀0 ≤ t ≤ T (8)

However, this optimization is difficult because u(·) is infinite
dimensional and the limit cycle ŷ(t) (constraint (8)) cannot
be solved analytically but only numerically. Therefore, we
restrict u(·) to a specific form and use a search algorithm to
maximize T subject to constraint (8). Following are the steps
to synthesize periodic control with a given peak constraint
k ≥ kmin.
Step 1: Compute utilization

Recall that the limit cycle is ŷ(t) = y?+Cξ̂(t). Intuitively,
it is desirable to have y? not only inside Safe but also as
far as possible from the boundary of Safe. Let yc be the
Chebyshev center of Safe. Then η is computed by solving
the following optimization:

minimizeη ‖y? − yc‖2 =
∥∥−CA−1(B0 +Bη)− yc

∥∥
2

subject to η ∈ [0, 1]m,
∑m
i=1 ηi ≤ k

− CA−1 (B0 +Bη) ∈ int (Safe)

where the last constraint becomes linear if Safe is a hyper-
cube or a polytope.
Step 2: Construct periodic control

Once η has been computed, distribute m non-overlapping
right-open intervals, each of length ηi respectively, into the
interval [0, k] on the real line (Fig. 2). Let interval i be
[si, si+ ηi) ⊆ [0, k]. Since

∑m
i=1 ηi ≤ k, such a distribution

is always possible. Given any period T > 0, construct the
T -periodic ui(·) as

ui(t) =

{
1 if (j + ri)T ≤ t < (j + ri + ηi)T , j ∈ N
0 otherwise

in which ri = si−bsic ≥ 0, where the notation bcc denotes
the largest integer not exceeding c. It can be shown that∑m
i=1 ui(t) ≤ k for all t. Notice that when T varies, u keeps

the same pattern and is only scaled by T in time.
Step 3: Compute time period T

In this step, we maximize T subject to constraint (8), in
which ŷ(t) can only be computed numerically. T can be

0 1 2

s1 η1 s2 η2 s3 η3

Fig. 2. Distribution of m non-overlapping intervals into [0, k].

Fig. 3. 3-D Building Model for the small-scale case study.

approximated by using a standard binary search algorithm
where in each iteration, the limit cycle ŷ(t) is computed for
t ∈ [0, T ] and is checked whether it is inside Safe.

V. CASE STUDY

In this section we report the results of two case studies in
which we applied the proposed green scheduling approach to
a multi-zone building with radiant heating system. We also
compare the results to uncoordinated On-Off control.

A. Small-scale case study with EnergyPlus
In the first case study, we considered a single floor, L-

shaped building divided into 3 interior conditioned zones
as shown in Figure 3. There is a single window in the
West zone South wall. An electric low temperature radiant
system is used for heating the floor of each zone, with power
ratings of 12kW, 8kW and 8kW for the North, West and
East zones respectively. Temperatures in each zone were
desired to be kept between l = 22 ◦C and h = 24 ◦C. The
ambient air temperature profile was of Chicago, IL, USA.
The disturbances due to internal heat gain and solar heat
gain were different for every zone and time-varying.

An EnergyPlus model of the building was modified from
an example distributed with EnergyPlus 7.0. In this case
study, we used the EnergyPlus model as the ground truth for
the building, i.e., it was considered as the “real” building.
System identification of the building model and implemen-
tation of controllers for the building’s radiant heating system
were carried out in Matlab, while thermal simulation of the
building was performed in EnergyPlus.

1) Model identification: Since the internal thermal model
of the EnergyPlus model is not accessible from outside
EnergyPlus, our first step was to identify a linear model for
the building. In particular, we used the state-space model (4)
developed in Section II and identified its parameters based
on experiment data obtained from simulation of the building
in EnergyPlus. Because there are 3 zones in the building,
the model has 9 state variables, 3 control inputs, and 3
outputs. The disturbances are the ambient air temperature,
the solar radiation, and the internal heat gains for each
zone. EnergyPlus were used to run controlled experiments
on the building model for 5 days in January and data from
EnergyPlus was recorded. The System Identification Toolbox

7580



0 2 4 6 8 10 12 14 16 18 20 22 24

15

20

25

Time of Day (h)

M
ea

n
Ai

rT
em

pe
ra

tu
re

(◦ C
) Measured (EnergyPlus)

Simulated (Matlab)

Fig. 4. Validation of the identified model for output 1 (West zone) in the
small-scale case study.

0 5 10 15 20
0

500

1,000

1,500

Time of day (h)

So
lar

ra
di

ati
on

(W
)

Fig. 5. Predicted solar radiation gain to the West zone in the small-scale
case study.

of Matlab was used to estimate the parameters of the model
from the experiment data.

Validation of the model was performed on January 14,
which is not one of the experiment days. Figure 4 plots the
measured (in EnergyPlus) and simulated (in Matlab) mean
air temperature of the West zone. The simulation outputs fit
the measured outputs 84.24%, 76.89% and 84.26% for the
West, East, and North zones respectively.

2) Green scheduling synthesis: We applied the periodic
green scheduling approach to the case study on the validation
day. The heating schedule of the EnergyPlus model specifies
that the heating system is turned off during the night from 6
PM to 6 AM, then is turned on to pre-heat the building from
6 AM to 8 AM, and is in normal operation mode from 8
AM to 6 PM (the working hours of the building). Therefore,
we used green scheduling for controlling the radiant heating
systems of the building from 8 AM to 6 PM.

Recall that in the system model (5) for green scheduling,
we use nominal values for the disturbances. In this case
study, disturbance prediction was used to derive these nom-
inal values. According to the weather profile, the ambient
air temperature varied around −6 ◦C between 8 AM and 6
PM, thus we used −6 ◦C as the nominal value for Ta. Based
on the occupancy and equipment schedules, the internal heat
gain of each zone can be predicted, and we chose its nominal
value to be 600W, 700W, and 800W for the West, East, and
North zones respectively. For the predicted solar radiation
gain to the West zone (the only zone with a window),
we noticed a significant increase at around 1 PM due to
the window’s direction, from under 200W to over 1000W
(Fig. 5). Therefore, we chose two different nominal solar
radiation gains: 100W before 1 PM and 600W after 1 PM
(both were averaged values for the respective intervals).

On inspecting the predicted disturbances, we decided to
synthesize two periodic schedules: one to be used before
1 PM and one after 1 PM. Their parameters are reported in
Table II. Notice that the time period T were both 60 minutes,
which are reasonably large. Computation time was less than

TABLE II
TWO PERIODIC SCHEDULES FOR THE SMALL-SCALE CASE STUDY

Schedule k η T (minutes)
Before 1 PM 2 [0.35, 0.42, 0.45] 60

After 1 PM 1 [0.05, 0.19, 0.31] 60
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Fig. 6. Zone temperatures for green scheduling (top) and uncoordinated
on-off control (bottom) in the small-scale case study.

1 s for each case. Instead of using disturbance prediction, we
could monitor the environment (e.g., ambient air temperature,
occupancy) and regenerate the schedule on the fly whenever
there is a significant change in the disturbances.

3) Simulation results: The periodic schedules were im-
plemented in Matlab and interfaced with the building energy
simulation in EnergyPlus. For comparison, we also imple-
mented the uncoordinated on-off control strategy, where the
radiant systems were controlled by independent two-position
thermostats. Zone temperatures from the simulations are
plotted in Fig. 6. In both cases, zone temperatures were kept
in the desired range between 22 ◦C and 24 ◦C. We observed
that the electricity demand for the uncoordinated strategy
had several high spikes while that of the green scheduling
strategy was more flat (Fig. 7). For green scheduling, the
effect of switching from the first schedule (peak constraint
k = 2) to the second schedule (peak constraint k = 1) at 1
PM can be seen clearly in Fig. 6 and Fig. 7. In total, green
scheduling saved 8% in electricity consumption and reduced
peak demand by 42.9% (Table III). This result showed the
potential of the proposed approach for reducing peak energy
demand. There is a decrease in the total energy consumption
since the periodic schedule tends to operate at a lower mean
temperature than uncoordinated control (Fig. 6).

B. Large-scale case study

We have seen in the first case study that green scheduling
reduced peak demand and flattened the demand curve. The
advantage of green scheduling will be shown more clearly

TABLE III
PEAK DEMAND AND CONSUMPTION IN THE SMALL-SCALE CASE STUDY

Uncoordinated Green scheduling (% saved)
Consumption (kW h) 93.2 85.7 (8.0%)
Peak demand (kW) 28.0 16.0 (42.9%)
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when there are a large number of systems to be coordinated.
In this case study, we took the identified linear model in the
first case study and scaled it to 100 zones. The zones were
still coupled, i.e., there were thermal interactions between
them. However, unlike the first case study, we simulated the
thermal model only in Matlab, not in EnergyPlus because an
EnergyPlus model was not available.

Using the same green scheduling synthesis, the peak con-
straint was computed to be k = 51 (among 100) and the time
period T was again 60 minutes. The computation in Matlab
took only about 3 seconds to complete. We implemented
both the green scheduling and the uncoordinated on-off
control for comparison. As can be seen on the electricity
demand plots in Fig. 8, the demand curve of the green
scheduling was almost flat with no sudden spikes, while that
of the uncoordinated control had very high peaks repeatedly.
The electricity consumption and peak demand of green
scheduling were 4303.3 kW h and 438.0 kW, while those of
uncoordinated control were 4536.8 kW h and 648.0 kW. Thus
green scheduling saved 5.15% in electricity consumption and
32.41% in peak demand, compared to uncoordinated control.

VI. CONCLUSION
The green scheduling approach for peak power reduction

in buildings has been extended to work with electric radiant
floor heating systems. The model used in this paper captures
the dynamics of actual systems more accurately than in our
previous work. We derived sufficient schedulability condi-
tions for general affine dynamical systems and proposed
a method for synthesizing periodic schedules for them.
Through realistic simulations in EnergyPlus, we showed that
our approach is effective for reducing the peak demand of a
multi-zone radiant floor heating system. The approach was
also shown to be scalable for a large number of zones.

The fast computation time of our method, e.g., about 3
seconds for 100 zones in our case study, allows us to deal
with time varying disturbances by recomputing the schedule

on the fly when the disturbances change significantly. Since
the control signal is on/off, the frequency of switching of the
radiant system equipments becomes an important concern.
The switching rate depends on how fast the dynamics of the
system are and can be controlled. In our case studies, the
switching rates were reasonably large (once every hour).

In this work, the thermal inputs to the system were selected
from a discrete set, i.e., the control signal (schedule) was
only on/off. However, many modern radiant heating systems
provide more continuous control options. For future work,
we want to look at incorporating continuous control inputs
in green scheduling. Hierarchical scheduling algorithms for
peak demand reduction in an extremely large-scale system
will also be considered.
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