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Abstract—We examine the problem of a sensor communicating
over a wireless channel to an actuator in order to control a
plant that is perturbed by a random disturbance. By allowing
the sensor to adapt online to the stochastic system state, we
develop transmission policies with guarantees on average control
performance and required average communication resources.
More specifically we design policies with guarantees either on
a linear combination of these two objectives, or with guarantees
with respect to a hard constraint on the average communication
resources. Based on approximate dynamic programming we prove
as well as illustrate in simulations that our policies outperform
policies that do not adapt online to the stochastic system state.

I. INTRODUCTION

Modern cyber-physical systems, e.g., smart homes or urban
infrastructures, rely on wireless communication to transfer
information between sensors and actuators at different phys-
ical locations. However communication resources are typically
constrained, e.g., wireless sensors are battery-powered, or
suffer from transmission uncertainties such as packet drops.
Recent research efforts indicate that online adaptation to the
physical process (plant state) is instrumental in achieving a
good tradeoff between control performance and communication
resources. A typical example of state-based communication
policies is event-based control [1]–[6] where the system state
is continuously monitored and communication between sensors
and actuators is triggered only when some event occurs, e.g.,
the state exceeds some threshold. This framework results in av-
erage communication rates lower than standard periodic control
setups and without significant losses in control performance.
When allocating general wireless communication resources,
e.g., transmit power, adaptation to both plant and channel
conditions becomes apparent [7].

Despite recent interest in state-based communication mech-
anisms, providing guarantees on the amount of average com-
munication resources required for such mechanisms or their
achieved long term control performance remains a chal-
lenge [5]. Moreover, the design of optimal state-based com-
munication mechanisms is computationally hard. As shown
in [1], [7] this problem can be posed as a Markov decision
process problem, but dynamic programming algorithms over
the continuous-valued system state become impractical, moti-
vating the development of suboptimal solutions [6]–[10].

In this paper we examine the problem of a sensor com-
municating wirelessly to an actuator in order to control a
linear plant perturbed by random disturbances (Fig. 1). We
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Fig. 1. Wireless Control System. A sensor measures the state of a plant
perturbed by a random disturbance. The sensor decides whether to transmit
the measured information over a packet-dropping wireless channel to a
receiver/controller providing control inputs.

are interested in designing state-aware sensor transmission
policies which optimize average control performance sub-
ject to a given budget on average communication resources
(Section II). As mentioned above, computing optimal sensor
policies is computationally hard, hence we aim for suboptimal
policies which however provide performance guarantees by
design. In particular, we are interested in policies improving
upon the performance of simple non-state-aware policies which
meet the same desired communication budget, and which are
used hereby as a reference. The methodology for improving
upon the reference policies is based on approximate dynamic
programming techniques, also employed in [6], [7].

We provide a design methodology with respect to two
different types of improvements upon reference policies. First
in Section III we consider a Lagrangian relaxation of the
original problem, leading to a linear combination of control
and communication objectives. We propose a family of sensor
policies which are guaranteed to improve upon the reference
ones with respect to this family of linear objective combi-
nations (Theorem 1). Under the proposed policies the sensor
transmits when an explicitly constructed quadratic function of
the system state exceeds a threshold. These policies are similar
to the common event-based control framework [5] with the
exception that they enjoy performance guarantees by design.

Second in Section IV we propose communication policies
which are guaranteed to meet the desired average communica-
tion budget, while simultaneously improving upon control per-
formance in comparison to reference policies. This is achieved
by enforcing that in expectation over the current plant state and
at every time step the sensor meets the desired communication
budget. The proposed policy is again threshold-based but the
threshold is now dynamically changing over time anticipating
the plant state that the sensor will measure at each time step.
We note that policies with average communication guarantees
were also considered in [6]. However that was achieved by
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periodically designing deterministic transmission schedules to
be followed by the sensor, i.e., adapting to the plant state
only intermittently. In contrast, our policies allow the sensor
to continuously adapt to and exploit online at each time step
the stochastic nature of the plant state process.

Finally we describe a procedure to efficiently compute
the dynamically varying thresholds of our policies. We note
that the resulting policies are still computationally intense as
different thresholds are required for different expected plant
state values. In practice we can design a finite number of
thresholds for a discretized space of expected state values. We
conclude our paper with numerical simulations (Section V) and
concluding remarks (Section VI).

II. PROBLEM DESCRIPTION

We consider a wireless control architecture where a plant
is controlled over a wireless medium. A sensor measures the
state of the plant and transmits it to a controller computing
the plant control input – see Fig. 1. Our goal is to design
the communication aspects of the problem, hence we assume
the dynamics for the control system are fixed, meaning that
a controller has been already designed. We assume that the
evolution of the system depends on whether a transmission
occurs at time k or not, indicated with variables γk ∈ {0, 1}.
We suppose the system evolution is described by a switched
linear time invariant model of the form

xk+1 =

{
Ac xk + wk, if γk = 1
Ao xk + wk, if γk = 0

. (1)

Here xk ∈ Rn denotes the state of the overall control system
at each time k, which may in general include both plant
and controller states – see following example or [11]. At a
successful transmission the system dynamics are described by
the matrix Ac ∈ Rn×n, where ’c’ stands for closed-loop, and
otherwise by Ao ∈ Rn×n, where ’o’ stands for open-loop. We
assume that Ac is asymptotically stable, implying that if system
successfully transmits at each time step the state evolution
xk, k ≥ 0 is stable. The open loop matrix Ao may be unstable.

On the other hand, the additive terms wk, k ≥ 0 model an
independent identically distributed (i.i.d.) noise process across
time according to a known probability distribution φ0,W with
mean zero and positive definite covariance W . We assume that
the probability distribution does not contain any atoms [12, Ch.
1]. An example is Gaussian disturbance. We emphasize that
knowledge of the distribution is important in our approach –
see Sec. IV later. However our results hold regardless of the
shape of the distribution.

We are interested in a control performance criterion that
accounts for a quadratic plant state cost at each time step k as

xTk Qγk xk. (2)

This cost is allowed to depend on whether transmission occurs
(γk = 1), in which case it takes the form xTkQ1xk, or not
(γk = 0), in which case it becomes xTkQ0xk. Both matrices
Q0, Q1 are assumed to be positive semidefinite. Examples are
presented next.

Example 1. Consider a linear plant of the form

xk+1 = Axk +Buk + wk, (3)

where wk is an i.i.d. Gaussian disturbance, and a wireless
sensor transmitting the state xk to the controller. Consider first
a simple control law which applies a zero input uk = 0 when
no information is received, and upon receiving a measurement
it applies a state feedback uk = Kxk leading to a stable
closed loop mode A + BK. The overall networked system
dynamics are expressed if the form (1) with dynamics Ao = A,
Ac = A+BK. If we are interested in a usual linear quadratic
regulation cost described as xTkQxk + uTkRuk for some given
positive definite matrices Q,R. This cost is of the form (2)
with Qo = Q, Qc = Q+KTRK

Alternatively suppose the controller keeps a local estimate
of the state according to

x̂k =

{
xk, if γk = 1
Ax̂k−1 +Buk−1 if γk = 0

. (4)

That is, when no measurement is received the estimate is prop-
agated according to the plant dynamics (without the unknown
current disturbance). Suppose the controller applies the input
uk = Kx̂k at each time step. Such a control architecture is
common [3], [7]. We can rewrite the overall plant-controller
dynamics with respect to an augmented state xk, x̂k−1 as a
switched linear system in the form of (1) with dynamics

Ao =

[
A BK(A+BK)
0 (A+BK)

]
, Ac =

[
A+BK 0

I 0

]
.

(5)
The augmented system is also perturbed by an augmented

noise vector with zero mean and covariance
[
W 0
0 0

]
. A

quadratic regulation cost of the form xTkQxk +uTkRuk, which
is equivalent to xTkQxk + x̂TkK

TRKx̂k can again be written
in the switched quadratic form of (2).

We are interested in the design of sensor transmission poli-
cies that are efficient with respect to the control performance of
such a system, as well as the utilized communication resources.
More specifically, suppose at each time slot k the sensor
transmits with some probability αk ∈ [0, 1]. The problem we
address is how to select these randomized decisions at each
time step given the available information at the sensor.

When the sensor transmits, the corresponding packet might
get dropped due to noise in the wireless channel [7]. We assume
that the packet success probability is constant denoted by q ∈
[0, 1]. The success of the transmission at time slot k becomes
a Bernoulli random variable with success probability

P(γk = 1) = q αk. (6)

This packet success can be actively controlled by the sensor
to make the control system in (1) switch in a random but
controlled fashion between the two modes of operation (open
and closed loop) at each time step. The transmit rates αk, k ≥ 0
to be designed affect the performance of the control system,
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for which we account with the long turn average quadratic cost

Jcontrol(α0, α1, . . .) = lim sup
N→∞

1

N

N−1∑
k=0

E[xTk Qγk xk]. (7)

The expectation at the right hand side accounts for the ran-
domness introduced by the system disturbance, the channel, as
well as the selected randomized sensor access policy.

Besides control performance, the sensor’s transmission de-
cisions should efficiently use available wireless communica-
tion resources, such as transmit power [7]. Assuming for
simplicity that each transmission incurs a unit of normalized
communication cost, we would like to account for the average
communication cost

Jcomm(α0, α1, . . .) = lim sup
N→∞

1

N

N−1∑
k=0

E[αk]. (8)

Our goal is to design sensor transmission policies, that is,
transmission decisions αk adapted to the available information
at the sensor at each time step k. This information includes the
current measurement xk, as well as all previously collected lo-
cal measurements x0, . . . , xk−1 and the success of all previous
transmissions γ0, . . . , γk−1. The latter can be made available
by acknowledgments sent from the receiver/controller to the
sensor.

We are interested in designing a sensor transmit policy that
minimizes the control regulation cost of the system, while at
the same time the average communication cost does not exceed
a desired budget α̃ ∈ [0, 1]. This is posed as follows.

Problem 1

minimize
αk∈[0,1],k≥0

Jcontrol(α0, α1, . . .) (9)

subject to Jcomm(α0, α1, . . .) ≤ α̃ (10)

Solving for the optimal policy is computationally hard, as
it involves dynamic decisions over a continuous valued state
xk ∈ Rn. Indeed this can be posed as a Markov Decision
Process problem – see Remark 1. Hence we only design sub-
optimal policies for which, however, we provide performance
guarantees. In particular we design policies which improve
upon simple non-state-aware policies with respect to the goals
of Problem 1.

To proceed with our design we make the following assump-
tion, which is explained in the following section.

Assumption 1. The system dynamics, the packet drop rate,
and the required average communication cost satisfy

ρ
(
q α̃ Ac ⊗Ac + (1− q α̃)Ao ⊗Ao

)
< 1 (11)

where ρ(.) denotes the spectral radius and ⊗ the Kronecker
product.

In the following section we present simple non-state-aware
polices that will be used as a reference throughout the paper.
Then we develop state-aware policies which are guaranteed to
improve with respect to a Lagrangian relaxation of Problem
1, i.e., a linear combination of the control and communication

costs. We proceed in Section IV to describe policies which by
design meet the communication budget in Problem 1, while at
the same time improve upon the control performance objective
of Problem 1 with respect to the reference policies. This is
achieved by enforcing the communication constraint to hold in
expectation over current plant state conditions.

Remark 1. Formally our communication design problem can
be seen as a Markov Decision Process (MDP) problem with
state xk and action αk [13]. The difficulty in solving these
MDP instances lies on the fact that xk takes a continuum of
values, rendering standard value or policy iteration algorithms
computationally hard. See also [1], [7] for related state-aware
communication design problems for control systems. Problem
1 is even more complex as it involves a constraint.

III. POLICIES WITH JOINT CONTROL AND
COMMUNICATION GUARANTEES

We begin by considering a simple non-state-aware policy
that is feasible for Problem 1, and will be used as a reference
policy throughout the paper. Suppose at each time step the
sensor randomly decides whether to transmit or not with
constant probability α̃, that is, αk = α̃ for all k ≥ 0. With a
slight abuse of notation we will denote this reference policy as
α̃. It is immediate that such a policy meets the communication
constraint of Problem 1. In the following result we characterize
the control performance of the reference policy denoted by
Jcontrol(α̃). 1

Proposition 1. Let Assumption 1 hold. Consider the sys-
tem described by (1) and the reference randomized policy
αk = α̃, k ≥ 0. Then the system is mean square stable,
i.e., lim supk→∞ ExkxTk < ∞, and the control system cost
(7) equals Jcontrol(α̃) = Tr(P W ) where P is a positive semi-
definite matrix satisfying the linear matrix equality

P = q α̃ (Q1 +ATc PAc) + (1− q α̃)(Q0 +ATo PAo). (12)

This result is part of the random jump linear system the-
ory [15] where it is actually shown that Assumption 1 is
necessary and sufficient for stability under such a reference
policy. This is the reason it is included in our work.

The interpretation of this result is that the quadratic function
xTPx models the future expected control cost if the sensor
is to follow this reference policy, i.e., the cost-to-go of this
policy [13]. Using this function as a reference cost-to-go, we
can design new policies that adapt online to the system state
and have improved long term performance in comparison to
the reference one. This procedure is known in the area of
approximate dynamic programming as rollout policies [13, Vol.
1] – see also Remark 2 later.

We begin by considering long term performance of the
system as a Lagrangian relaxation of the goals of Problem
1, that is,

Jcontrol(α0, α1, . . .) + ν Jcomm(α0, α1, . . .) (13)

1Due to space limitations the proofs are omitted but can be found in [14,
Ch. 6].
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for some positive weight ν ≥ 0. This is equivalently a linear
combination of the control and communication objectives, and
the weight ν can be tuned as a parameter to penalize more
or less the communication resources. We explicitly describe
state-aware policies which improve upon the reference ones
with respect to the above relaxed objective.

Theorem 1 (Policies with Joint Guarantees). Let Assumption 1
hold. Consider the system described by (1) and for any non-
negative constant ν ≥ 0, consider the policy αk = α∗ν(xk)
where

α∗ν(x) =

{
1, if xT qM x ≥ ν
0 otherwise. (14)

and
M = Q0 +ATo PAo −Q1 −ATc PAc, (15)

and P is the positive semi-definite matrix satisfying (12). Then
the average control and communication costs of this policy
satisfy

Jcontrol(α
∗
ν) + ν Jcomm(α∗ν) ≤ Jcontrol(α̃) + ν Jcomm(α̃). (16)

A number of comments are in order. First the proposed
policy (14) is not randomized like the reference policy but
deterministic. It is also a threshold policy, i.e., the sensor
transmits if a quadratic function of the current state exceeds
some threshold. Similar threshold-based policies also appear
in the event-based control framework of, e.g., [1], [3], [5]. The
threshold in (14) is explicitly given by the chosen weight ν ≥ 0
on communication cost in the relaxed objective (13).

The matrix M in the policy is explicitly defined in (15)
in terms of the plant dynamics Ao, Ac, the quadratic plant
state costs Q0, Q1, and the reference matrix P , which by
(12) depends on the required communication budget α̃ and
the packet drop rate q. We interpret xTMx as the relative
value of transmitting the current state x. Indeed (15) involves
a difference between matrices corresponding to the future long
term control costs of not transmitting (open loop) and that of
closing the loop, with P modeling the future reference cost
of the system. By (14) the sensor transmits whenever the cost
of closing the loop is at least ν units better than the cost of
not transmitting. We note that the matrix M is not necessarily
positive semi-definite.

The most important observation about Theorem 1 is that the
proposed policy comes with a performance guarantee. For any
given parameter ν ≥ 0, the proposed policy improves upon the
reference policy with respect to the linear combination of con-
trol and communication costs (cf. (16)). Geometrically, we can
think of average communication and control costs as two axes
(Fig. 2) where the reference policy corresponds to the point
(α̃,Tr(PW )). The proposed policy (14) is guaranteed to lie to
the left of the line with slope −ν going through that reference
point. As we will also see in numerical simulations this results
in significant performance improvements in practice.

Unfortunately there are no separate guarantees about either
control or communication performance of the proposed policy
(14). In particular, it is not certain that the communication
budget (10) in Problem 1 is met. A heuristic would be to

Fig. 2. Illustration of policies with respect to control and communication
costs. The reference policy is the non-state-aware policy meeting the desired
communication budget of Problem 1. For a fixed weight ν in the relaxed
objective (13), the policy described in Theorem 1 lies at the left of the line
with slope −ν. On the other hand, the policy of Theorem 2 meets the desired
communication guarantees by design and also improves upon the reference
control cost, hence it lies below the reference point.

increase the weight ν >> 0, but that deteriorates control
performance as can be seen in the geometric interpretation
of Fig. 2. In the following section we remedy this limitation
by developing policies similar to (14) which are additionally
enforced by design to meet the communication requirements.

IV. POLICIES WITH GUARANTEED COMMUNICATION COSTS

The policies in Theorem 1 of the previous section are station-
ary functions of the form α : Rn → [0, 1] mapping plant state
conditions xk to sensor transmission decisions αk = α(xk).
In this section we enhance these policies to enforce that in
expectation over the current plant state conditions the average
communication budget (10) in Problem 1 is met. That is, we
design transmission functions α(.) such that E[α(xk)] ≤ α̃
where the expectation is over the distribution of xk. We
characterize this distribution as follows.

At the beginning of time step k and before actually measur-
ing state xk, the sensor knows by (1) that xk has a distribution
φ0,W centered at some current mean value denoted here by
x̄k. For compactness we denote such a distribution as φx̄k,W

and the integration with respect to it as Ex̄k,W . The mean x̄k
evolves according to

x̄k =

{
Ac xk−1, if γk−1 = 1
Ao xk−1, if γk−1 = 0

. (17)

That is, if a transmission occurred at the last time step the
sensor knows that the plant state evolves according to the
closed loop mode Ac and expects a measurement xk with
mean x̄k = Acxk−1. The case of no transmission is similar.
The sensor can keep track of this evolving mean value since
it knows all past measurements and transmission successes.

The mean value x̄k summarizes all the information available
at the sensor about the distribution of xk. We propose policies
which specify that at each time step k given the current mean
value x̄k the sensor selects a current transmission function
αx̄k

(.) and upon measuring the state xk the sensor will transmit
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with the prescribed probability αk = αx̄k
(xk). For brevity let

us also denote the set of all such transmission functions given
some value x̄k as A = {α(.) : Rn → [0, 1]}.

Our main result is as follows.

Theorem 2 (Policies with Communication Guarantees). Let
Assumption 1 hold. Consider the setup of Theorem 1. Consider
a dynamic sensor policy α∗x̄(x) defined for each mean value
x̄ ∈ Rn as the optimal solution to the following optimization
problem

minimize
α(.)∈A

Ex̄,W [−α(x)xT qMx] (18)

subject to Ex̄,W [α(x)] ≤ α̃. (19)

Then the communication cost of this policy satisfies the desired
bound

Jcomm(α∗x̄(x)) ≤ α̃ (20)

and the control cost of this policy satisfies

Jcontrol(α
∗
x̄(x)) ≤ Jcontrol(α̃). (21)

At each time step the sensor selects the current transmit func-
tion as a solution to the constrained optimization problem (18)-
(19) where both the objective and the constraint are expressed
in expectation over the current plant state conditions xk to be
measured. Constraint (19) guarantees that the communication
budget α̃ of Problem 1 is met in expectation at each time step,
hence also in the long run (cf. (20)).

The expected cost in (18) entails the matrix M interpreted
after Theorem 1, as the relative value of transmitting the
current state. By minimizing (18), the sensor deviates from
the reference policy at each time step but without loss in
control performance (cf. (21)). See Fig. 2 for a geometric in-
terpretation. In numerical simulations this results in significant
performance improvements in practice.

To find the transmission function α∗x̄(x) given any current
mean value x̄ ∈ Rn, the sensor needs to solve problem
(18)-(19) over the space of transmission functions. This is an
infinite-dimensional optimization problem however it enjoys
simple threshold-based solutions, as shown next.

Proposition 2. Consider the transmission function optimiza-
tion problem in (18)-(19) for some fixed x̄ ∈ Rn. Then there
exists a non-negative constant ν(x̄) ≥ 0 such that the function

α∗x̄(x) =

{
1, if xT qM x ≥ ν(x̄)
0 otherwise. (22)

is an optimal solution.

The proof relies on the fact that for any value x̄ ∈ Rn the
problem (18)-(19) has zero duality gap, based on the results of
[16], and that ν(x̄) is the optimal Lagrange dual variable.

The above proposition simplifies the search for general
transmission functions in Theorem 2 to search for threshold-
based functions. Moreover the resulting transmission policies
α∗x̄(.) in (22) are of the same quadratic threshold nature as the
policies of Theorem 1 or usual event-based policies [1], [3],
[5]. The threshold value however here is not a free parameter

as in Theorem 1, but it depends on the current mean value x̄k.
A computationally efficient procedure for finding this threshold
is discussed at the end of this section.

The proposed policy α∗x̄(x) is not stationary with respect
to plant state, i.e., the transmission decision αk is not just a
time-invariant function of xk but it also depends on its expected
value x̄k via the threshold. This dynamic anticipatory feature
differentiates our policy from the usual time-invariant event-
based control polices. The advantage of this dynamic feature
is that it provides communication guarantees (cf. (20)).

We note that to implement the proposed policy a transmis-
sion rule solving problem (18)-(19) is needed for any possible
mean value x̄k ∈ Rn. This requires the solution of an infinite
number of such optimization problems. In practice, as well as
in the numerical simulations that follow, the space of mean
values x̄k ∈ Rn can be discretized and solve instead a large
number of optimization problems at the discrete points.

Remark 2. The policies in this paper are designed by modeling
the future cost-to-go control performance according to the cost-
to-go of the reference non-state-aware policy. The advantage is
that the reference policy has a simple explicit quadratic cost-to-
go function xTPx where P is given in (12). Policies improving
upon a reference cost-to-go are known as rollout policies in
approximate dynamic programming [13]. Rollout policies for
sensor transmit power were designed in our previous work [7]
but without any guarantees as in the current paper. Rollout
sensor transmit policies have also been used in [6] however
based on deterministic periodic schedules as references. As a
result the policies in that work are updated once every period,
unlike our policies in Theorems 1 and 2 which allow the sensor
to continuously exploit online at each time step the stochastic
plant state process.

A. Computing Transmission Functions

As noted after Prop. 2 the threshold ν(x̄) corresponds
to the optimal Lagrange dual variable of problem (18)-(19).
We briefly describe a dual subgradient algorithm to find this
optimal dual point (cf. [17, Ch.8]). A subgradient direction
for the dual problem is typically given by the constraint
slack of the primal problem evaluated at a primal Lagrangian
minimizer. More precisely, given some dual variable νt ≥ 0
at iteration t, a corresponding primal solution is given by
substituting νt in place of ν(x̄) in (22). The constraint slack
of this solution with respect to (19) is given by the difference
Px̄,W [xT qMx ≥ νt] − α̃. Hence a dual subgradient ascent
algorithm to compute the point νt+1 for the next iteration is
given by

νt+1 = max
{

0, νt + εt

(
Px̄,W [xT qMx ≥ νt]− α̃

)}
(23)

where εt ≥ 0 is a stepsize, and the maximum is taken as
dual points are non-negative. Iterating (23), the dual variable
νt converges to the optimal ν(x̄) – see, e.g., [17, Ch. 8.2].

V. NUMERICAL SIMULATIONS

We consider a scalar control system as in the example of
Section II with A = 1.5, A+BK = 0.5, Gaussian disturbance
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Fig. 3. Comparison of policies. The reference non-state-aware policy with
the desired average communication constraint is shown. The policies of
Theorem 1 based on the relaxed objective outperform the reference. The policy
of Theorem 2 by design meets the communication constraint. For comparison,
the set of all non-state-aware randomized policies are also plotted.

with zero mean and variance W = 1, and an LQR control
stage cost with Q = 1, R = 10. Even though the plant
is scalar, the overall control system with the plant and the
estimator/controller as shown in (5) is two dimensional. We
assume the packet success rate of the wireless channel is
q = 0.9, and we are interested in solving Problem 1 with
a communication budget α̃ = 0.7.

In Fig. 3 we plot the control and communication costs of
non-state-aware randomized policies of the form αk = α̂ for
different α̂ ∈ [0, 1]. For low transmission rates the system
becomes unstable and the control cost diverges. We pick the
reference policy αk = 0.7 that meets our communication
budget. For a range of parameters ν ≥ 0, we simulate the
policies αν(x) of Theorem 1 and plot their empirical cost. As
expected from Theorem 1 they outperform the reference policy
with respect to linear combinations of the two objectives.
Even though the theory guarantees just an improvement, in
simulations we observe a significant improvement of ≈ 50%
in both control and communication costs.

Finally, we simulate the dynamic policy of Theorem 2 which
meets the required communication budget, as also shown in
simulation. Moreover, it results in a significant improvement
of ≈ 60% in control cost in comparison with the reference.
The dynamic policy performs slightly worse that some of the
stationary policies of Theorem 1. However, to the best of
our knowledge, there is no efficient procedure other than by
simulation in order to find those better stationary policies.

VI. CONCLUDING REMARKS

We design dynamic sensor transmission policies for wireless
control systems adapting online to the physical plant measure-
ments. Based on approximate dynamic programming ideas the
proposed policies come with improved control and communi-
cation performance. Moreover, we show how our policies can
be modified to meet hard average resource constraints, such
as a fixed communication resource budget. We prove, as well
as illustrate in simulations, that our online policies outperform
policies that do not adapt to the physical system state.

Our technique can be adapted for the reverse of Problem 1,
that is, optimizing communication cost while guaranteeing a
desired level of control performance. Moreover, our approach
can be naturally extended to allocate communication resources
among multiple control systems, e.g., for scheduling over a
shared wireless channel [18], guaranteeing desired communica-
tion or control performance separately for each system. Future
work also includes communication policies jointly adapted to
plant and varying channel conditions [7]. Finally, the design
requires further exploration when packet drops are not i.i.d. but
due to packet collisions from other transmitting closed loop
systems [19], [20].
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