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Abstract— In this paper, we address the problem of deploying
sensors to estimate the state of a plant described by discrete-
time fractional-order system. More specifically, we assume that
these systems’ parameters and disturbance/measurement noise
characteristics describe possible scenarios. Therefore, the goal
of this paper is that of selecting a subset of sensors that will
optimally perform (in a minimum squared error sense) among
multiple (finite) scenarios. In particular, we show this problem
to be NP-hard, and we provide a bisection-type algorithm with
suboptimality guarantees. Furthermore, we show that no other
algorithm ensures better optimality bound for this problem
unless P=NP. Finally, we present some simulations that illustrate
the applicability of the main results in an electroencephalogram
data associated with different tasks.

I. INTRODUCTION

Applications ranging from process control, automotive
industry, power systems, health, aircraft and traffic control
are often modeled by parametrizable dynamical systems [1],
[2]. The existence of such models is crucial to assess the
state of the system from only few measurements obtained
from the system’s output, i.e., its observability. In fact, from
a design point of view, to ensure that the state of the system
is recovered it is important to decide which collection of
state variables should be measured. The problem of sensor
placement aims to determine a subset of state variables that
need to be measured, while ensuring that a given perfor-
mance metric is achieved. For instance, in [3] the metric
considered relates with the mean square error associated
with linear time-invariant system under any disturbance and
measurements (with positive definite second moments).

In practical scenarios, the parameters describing the dy-
namical systems are often not accurately known, or the
disturbance and measurement noises might follow distribu-
tions with different characterizations. Therefore, one needs
to extend the previous research to the case where a de-
signer faces a finite collection of possible scenarios that
describe a specific dynamics and the characteristics of the
disturbance/measurement noises. More specifically, we aim
to explore the sensor placement under the case where a
finite collection of scenarios is possible, and we want to
maximize the performance across the different scenarios. In
particular, in what follows we explore the scenarios where the
dynamic systems are described by discrete-time fractional-
order systems [5], whose class contain the linear time-
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invariant systems as a particular case. In addition, these mod-
els are motivated by their ability to characterize the behavior
of neurological phenomena, such as electroencephalogram
(EEG) [6]. Thus, one can envision an application where dif-
ferent EEG recordings are associated with a finite number of
tasks (to be captured by different scenarios), and one wants to
determine a set of sensors with provable performance across
different tasks – which we explore in further detail in the
illustrative example. Furthermore, this enables a principled
approach to develop a new generation of brain-machine in-
terfaces, since it will enable a more accurate state estimation
and, hence, more efficient and reliable actuation strategies.

In [7], the sensor placement for multi-scenario is ad-
dressed when the plant is disregarded, and the sensors
are assumed as random variables. More specifically, the
goal is to determine a subset of these (with pre-specified
cardinality) that maximizes the mutual information of the
sensors with an underlying random process. An alternative
to the proposed problem is that of determining the minimum
number of sensors required for provable observability in the
case where the parameters are assumed unknown and can
be arbitrary. This problem was explored in [8], where the
authors determine the minimum number of sensors to ensure
a discrete-time fractional-order dynamics to satisfy structural
observability, which ensures observability for almost all
numerical realizations. Finally, the present work extends
that in [9], where the the selection of sensors considers a
single scenario. In particular, in [9], the authors propose an
objective function that captures the performance in terms of
the minimum square error, and show this to be submodular.
Nonetheless, as we show (see Section III-B), under the
assumption that we have different scenarios, the objective is
no longer submodular, which motivates the introduction of
novel set of strategies to address the problem, as we propose
in this paper.

The main contributions of this paper are as follows:
(i) we propose a robust sensor placement for discrete-time
fractional-order systems; (ii) we show the problem to be NP-
hard; (iii) we provide a bisection algorithm with optimality
guarantees; (iv) we show that no other algorithm can outper-
form the one proposed unless P=NP; and (v) we illustrate
the main results in the context of electroencephalogram data
associated with different tasks.

The remainder of this paper is organized as follows. In
Section II, we provide our setup and problem formulation.
In Section III, we present our main results. Finally, in
Section IV, we illustrate how our main results can be
applied in the context of real EEG data collected during the
performance of different tasks.
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II. PROBLEM STATEMENT

Consider N scenarios described by discrete-time
fractional-order systems as follows:

∆ixk+1 = Aixk + wik, i = 1, . . . , N,

yik = I(J )xk + vik, k = 0, 1, . . . ,
(1)

where xk ∈ Rn (n ∈ N) is the state vector, x0 the initial
condition, and yk ∈ Rn is the measured output vector, where
I(J ) is the n×n diagonal matrix whose entry j is one if j ∈
J and zero otherwise. Notice that, in particular, a sensor j is
used (or selected) if j ∈ J . Furthermore, for each scenario i,
we have the following: Ai describes the coupling dynamics
capturing the spatial dependency; wik the process noise; vik
the measurement noise; ∆i ≡ diag (∆α1

i ,∆α2
i , . . . ,∆αn

i ) ,
is the diagonal matrix operator with elements the {∆α1

i }ni=1,
where ∆

αj

i is the discrete fractional-order difference operator
given by

∆αj ≡
k+1∑
m=0

(−1)j
(
αj
m

)
xk−m+1,

and
(
αj

m

)
=

Γ(αj+1)
Γ(m+1)Γ(αj−m+1) , where αj > 0 is the

fractional-order exponent, and Γ(x) =
∫∞

0
tx−1e−tdt is the

Gamma function. In particular, we notice that αj captures
the temporal dependency of the process associated with xj .

In fact, for each scenario the system (1) can be re-written
in a closed-form as follows [8]:

xk = Gikx0 +

k−1∑
j=0

Gik−1−jwj , k ≥ 1, (2)

where

Gik ≡
{

I, k = 0,∑k−1
j=0 A

i
jG

i
k−1−j , k ≥ 1,

where Ai0 = Ai, and Aij is a diagonal matrix whose l-th
entry is (−1)j

(
αl

j+1

)
.

Now, consider a vector of measurements ȳk ≡
(yᵀ0 , y

ᵀ
1 , . . . , y

ᵀ
k)ᵀ, the vector of process noises w̄ik ≡

((wi0)ᵀ, (wi1)ᵀ, . . . , (wik)ᵀ)ᵀ and the vector of measurement
noises v̄ik ≡ ((vi0)ᵀ, (vi1)ᵀ, . . . , (vik)ᵀ)ᵀ. Whereas the vector
ȳk is known, the vectors w̄ik and v̄ik are not, as well as
the initial condition x0. Nonetheless, we can consider the
following (usual) mild assumptions: the initial condition
be unknown and modelled by a random variable whose
expected value is x0 and its covariance is C(x0) � 0; the
disturbance wik and noise vik to be described by zero-mean
random variables, whose covariance is described respectively
by C(wik) � 0 and C(vik) = σ2

i I , with σi > 0, for all
k ≥ 0. Further, for all k, k′ ≥ 0 such that k 6= k′, let the
x0, wk and vk, as well as, the wk and wk′ , and vk and
vk′ to be uncorrelated. Therefore, under these assumptions,
the best linear estimator x̂k′ for xk′ , with k′ belonging to
a observation interval [0, k] = {0, 1, . . . , k}, is given as
follows:

x̂k′ = Lk′ ẑk−1, (3)

where

ẑk−1 = E(zk−1) + C(zk−1)Oᵀ
k(J ) [Ok(J )C(zk−1)Oᵀ

k(J )

+σ2I
]−1

(ȳk −Ok(J )E(zk−1)− E(v̄k)) (4)

is the minimum square estimate of zk−1 =
(xᵀ0 , (w̄

i
k−1)ᵀ)ᵀ, E(x) is its expected value of x, and

C(x) ≡ E ([x− E(x)] [x− E(x)]
ᵀ
) its covariance;

and Ok(J ) = [Lᵀ
0I(J ), Lᵀ

1I(J ), . . . , Lᵀ
kI(J )]ᵀ,

Lj = [Gj , Gj−1, . . . , G0,0] for j ≥ 0, and 0 is a
zero matrix with appropriate dimensions. Furthermore, the
minimum mean square error of our estimate x̂k′ under the
scenario i is given by

mmse(xk′) ≡ tr
(
Lk′Σ

i
zk−1

(J )Lᵀ
k′

)
, (5)

where Σizk−1
(J ) is the error covariance of ẑk−1 when a

subcollection J ⊂ [n] = {1, . . . , n} sensors is considered,
and it is described by

Σizk−1
(J ) ≡ E ((zk−1 − ẑk−1)(zk−1 − ẑk−1)ᵀ)

= C(zk−1)− C(zk−1)Oᵀ
k(J )(

Ok(J )C(zk−1)Oᵀ
k(J ) + σ2

i I
)−1Ok(J )C(zk−1),

(6)

where the covariances implicitly depend on the error char-
acteristics associated with the ith scenario. Subsequently, we
can consider as an estimation error metric the η-confidence
ellipsoid of zk−1−ẑk−1 [10]. More specifically, the minimum
volume ellipsoid that contains zk−1−ẑk−1 with probability η
when a subset J of sensors is selected, that can be described
by E iε ≡ {z : zᵀΣizk−1

(J )z ≤ ε}, where ε ≡ F−1
χ2
n(k+1)

(η)

and Fχ2
n(k+1)

is the cumulative distribution function of a
χ-squared random variable with n(k + 1) degrees of free-
dom [11]. Thus, the volume of E iε ,

vol(E iε) ≡
(επ)n(k+1)/2

Γ (n(k + 1)/2 + 1)
det
(

(Σizk−1
)1/2(J )

)
, (7)

where the Gamma function quantifies the estimation’s error
of ẑk−1, and as a result, for any k′ ∈ [0, k], of x̂k′ as
well, since per (3) the optimal estimator for zk−1 defines the
optimal estimator for xk′ [11]. Henceforth, if we consider
the logarithm of (7), then we obtain

log vol(E iε) = β + 1/2 log det
(

Σizk−1
(J )

)
; (8)

where β is a constant that depends only on n(k + 1)
and ε, in accordance to (7), and, as a result, we refer to
the log det

(
Σizk−1

(J )
)

as the log det estimation error of
the Kalman-like filter under scenario i [9]. This function
is supermodular and non-increasing (formally defined in
Section III) that enable the use of algorithms to attain an
approximate solution with some optimality guarantees [9].

Therefore, in order to extend the previous formations to
the multi-scenario setup, we address the following problem.
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A. Scenario-based Sensor Placement

Given N scenarios described in (1), our aim is to deter-
mine the r sensors that solve the following problem

minimize maximize
i∈{1,...,N}

log det
(

Σizk−1
(J )

)
subject to |J | ≤ r, J ⊆ {1, . . . , n}.

(P1)

Nonetheless, the minimum-maximum operations across
different submodular objectives is not necessarily submod-
ular [7]. In fact, in the next section, we show that for
the present setup this is also the case. Therefore, new
mechanisms are required to address the problem are required,
which are the basis of the main results of our paper.

III. MAIN RESULTS

We present the main results of the present paper. First, in
Section III-A, we show that the proposed problem is NP-
hard (see Theorem 1). Then, in Section III-B, we provide
an example where common strategies to deal with similar
problems will fail in the general setup proposed in this paper.
Next, in Section III-C, we provide our approach, whose
procedure is summarized in Algorithm 1. Furthermore, in
Section ??, we show that such approach possesses optimality
guarantees (Theorem 3), and these cannot be improved by
any other polynomial algorithm (Theorem 4).

A. Computational Complexity

We start by showing that the problem at hand is compu-
tationally challenge. In fact, it can be shown that there is
no polynomial-time algorithm providing any approximation
guarantee unless P=NP.

Theorem 1: Define fi(J ) , log det (Σizk−1
(J ) and

f(J ) , max {fi(J ) : i = 1, . . . , N}. For any function γ :
Z+ → Z+, if there is a polynomial-time algorithm that
returns a set S satisfying f(J ) ≥ γ(n)f(J ∗), where J ∗
is the optimal solution to P1, then P=NP.

Proof: As a preliminary, define the hitting set problem
as follows. Let U denote a finite set, and let T1, . . . , Tm
denote a collection of subsets of U . The hitting set problem
is to select a minimum-size set S such that S∩Ti 6= ∅ for all
i = 1, . . . ,m. The hitting set problem is known to be NP-
hard [12]. The approach is to show that, if a polynomial time
algorithm that returns a set S satisfying f(J ) ≥ γ(n)f(J ∗)
exists, then there is a polynomial-time algorithm for the
hitting set problem. Let U and T1, . . . , Tm define an instance
of the hitting set problem. An instance of the worst-case
sensor placement problem can be constructed from U and
T1, . . . , Tm as follows. Choose α = 1. Let n = |U | and let
V = {1, . . . , n} denote the set of sensor locations. Define
C(x0) = I , C(wk) = I , and define A(l) for l = 1, . . . ,m by

(A(l))ij =

 1, i ∈ Tl, j 6= i
(n+ 1), i ∈ Tl, j = i
0, else

(9)

Let J be the output of the polynomial-time algorithm. Now,
if J is not a solution to the hitting set problem, then

Ok,S = 0 for some k, and hence fl(J ) = 0. Conversely,
if J is a hitting set, then OTk,SOk,S is nonzero and positive
semidefinite, and hence fl(S) > 0 for all l = 1, . . . ,m. Since
by assumption f(J ) ≥ γ(n)f(J ∗) for some γ(n) > 0, we
must have f(J ) > 0, implying that J is a solution to the
hitting set problem. Hence if there exists a hitting set of
cardinality r, then that set will be returned by the algorithm.

We can then obtain a minimum-size hitting set in poly-
nomial time by iterating over all r = 1, . . . , n and finding
the minimum r where the solution to P1 returned by the
algorithm satisfies f(J ) > 0. This set J is a minimum-
size hitting set. This implies existence of a polynomial-
time algorithm for the NP-hard hitting set problem, and thus
P=NP.

As a consequence, it is recurrent to resort to greedy
algorithms that will provide an approximate solution to P1.
Among the possible strategies is that of showing that the
objective is submodular, which leads to well known greedy
algorithms that ensure some optimality guarantees. Nonethe-
less, in the next subsection, we show that our problem
does not possess such properties, and, in fact, the greedy
algorithms to obtain an approximate solution can perform
arbitrarily poorly upon the initial setup of the problem, i.e.,
the optimality gap can be made arbitrarily large.

B. Sub-Optimality Gap

In this subsection, we show that the proposed problem
cannot be directly address by the submodular optimization
schemes previously proposed in the literature. More specif-
ically, we provide a simple counter-example (with small
state dimension) that presents a decay in performance, i.e.,
achieved value by the objective set function in P1, for a
variation of the parameters in the different scenarios.

Recall, that a particular instance of discrete-time
fractional-order systems is that of discrete linear time-
invariant systems. Therefore, let us consider two scenar-
ios described by linear-time invariant systems (where the
fractional-order derivative is the usual derivative) as follows

A1 =

 0 0 0 10
10 0 0 0
0 10 0 0
0 0 10 0

 ,

and

A2 =

 0.1136 1.4790 −0.2339 8.5306
9.0953 −0.8608 −1.0570 0.1922
−0.4677 10.7847 −0.2841 −0.8223
−0.1249 0.3086 9.9133 −0.0942

 ,

where A2 results from A1 with each entry perturbed by
standard normal noise. In addition, we assume that the
disturbance/measurement and initial errors to be the same in
both secnarios; more specifically, C(xi0) = i10−1I4 where
I4 is the 4 × 4 identity matrix and C(wik) = i10−1I4 and
σi = 0.1 for i = 1, 2. Simply speaking, we are assuming that
there is only uncertainty in the system dynamic’s model.

In Table III-B, we present the values of the objective in
P1 for the possible subcollection of sets with at most two
elements due to restricting r = 2, and the instance of time
consider is k = 3. Notice that by performing the usual greedy
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strategies used for submodular functions on P1 with r = 2,
one would first select sensor that minimizes the maximum
achieved value of performance (measured as in the objective
in P1) across the two different scenarios. Therefore, one
first chooses sensor 4, and in the second step would choose
sensor 2, leading to a final selection of {2, 4} that incurs in
−82.0580, whereas the optimal value is −82.1284 achieved
when the pair {1, 3} is considered. Consequently, there is
an optimality gap of 0.0704, which can be made larger by
increasing C(xi0) and C(wik) by a multiplicative factor, while
decreasing by another the term σi, which follows from the
analysis of (6). ◦

J F1(J ) F2(J ) max{F1, F2}
∅ -36.8414 -36.8414 -36.8414
{1} -65.2056 -64.3435 -64.3435
{2} -65.2056 -64.0357 -64.0357
{3} -65.2056 -64.9990 -64.9990
{4} -65.2056 -65.2516 -65.2056
{1, 2} -78.4066 -77.9726 -77.9726
{1, 3} -82.9736 -82.1284 -82.1284
{1, 4} -78.4066 -78.7959 -78.4066
{2, 3} -78.4066 -78.0992 -78.0992
{2, 4} -82.9736 -82.0580 -82.0580
{3, 4} -78.4066 -78.1341 -78.1341

TABLE I
EVALUATION OF OBJECTIVE SET FUNCTION IN P1 .

C. Proposed Approach
In this subsection, we propose a bisection algorithm with

optimality guarantees when the constraints are relaxed. To-
wards this goal, notice that P1 can be re-written as follows:

minimize
c∈R

c

subject to log det
(

Σizk−1
(J )

)
≤ c, i ∈ {1, . . . , N},

|J | ≤ r, J ⊆ {1, . . . , n}.
(P2)

Now, given a value of c, it follows that P2 is closely related
with the following optimization problem

minimize
J⊆{1,...,n}

|J |

subject to log det
(

Σizk−1
(J )

)
≤ c, i ∈ {1, . . . , N}.

(P3)
More specifically, if there exists J such that |J | ≤ r, then

J achieves feasibility of the constraints in P2. Nonetheless,
P3 problem is also computationally challenging as we state
in the following result.

Theorem 2: The problem P3 is NP-hard. �
Proof: The proof follows by noticing that under a

single scenario, obtain as particular case the minimal sensor
placement problem under budget constraint for LTI systems,
see [13] for details.

Hereafter, we show that it is possible to reformulate P3

such that a suboptimal solution with optimality guarantees

is available. Subsequently, one just requires to execute such
strategy for different values of c, until an optimal value of c
is achieved.

In order to obtain a suboptimal solution to P3, we notice
that the main issue is the existence of several submod-
ular constraints that have to be simultaneously satisfied.
Let Fi(J ) = log det

(
Σizk−1

(J )
)

, then these constraints
can be replaced by an upper-truncated function F ci (J ) =
max{Fi(J ), c} that is also submodular [14], and averaged
out by considering F̄ c(J ) = 1

N

∑N
i=1 F

c
i (J ). Subsequently,

for c, it follows that Fci (J ) ≤ c if and only if F̄ c(J ) = c.
Thus, we obtain the following problem:

minimize
J⊆{1,...,n}

|J |

subject to F̄ c(J ) = F̄ c({1, . . . , n}),
(P4)

whose solution is also a solution to P3. Furthermore, P4 is a
particular instance of the submodular covering problem that
is also known to be NP-hard [15]. Notwithstanding, one can
use Algorithm 1, which provides the following guarantees
on the solution to P4.

Algorithm 1 Approximation Algorithm for P4

Input: The data required to Σizk−1
(J ) as in equation (6),

i.e., {({Ai,C(xi0), {C(wij)}j=1,...,k})}i=1,...,m, a maxi-
mum number r of sensors considered, and an approxi-
mation ε of the optimal value attained in P2

Output: an approximate solution J to P4

cmax = max
i=1,...,m

(
log det(Σizk−1

(∅))
)

;

cmin = min
i=1,...,m

(
log det(Σizk−1

({1, . . . , n}))
)

;

while |cmax − cmin| ≥ ε do
c = cmax+cmin

2 ;
J = ∅;
while F̄ c(J ) ≥ c do

for each i ∈ {1, . . . , n}
∆i = F̄ c(J ∪ {i})− F̄ c(J );
end for
J = J ∪ {arg max

s∈{1,...,n}
∆s};

end while
if |J | > r then

cmin = c;
else
cmax = c;

end if
end while

Theorem 3: Let S ′ be a solution obtained using Algo-
rithm 1 for a given c ∈ R+ within a small ε-neighborhood of
the optimal value (i.e., ε << 1), and S∗ an optimal solution
to P4, then

|S ′| ≤
(

1 + ln

{
F̄ c({1, . . . , n})− F̄ c(∅)

F̄ c({1, . . . , n})− F̄ c(ST−1)

})
|S∗|,

where ST−1 ⊂ {1, . . . , n} at the iteration T−1, before S ′ =
ST at iteration T is obtained. Furthermore, the computational
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complexity of Algorithm 1 is given by O(Nk3n5|ln(ε)|),
where k is the finite-time horizon of the estimate sought. �

Proof: The bound follows by invoking property (iii) of
Theorem 1 in [15]. The complexity follows from notic-
ing that we need to perform N times the evaluation of
the objective, i.e., the number of scenarios, with the set
S ′ together with one element of {1, . . . , n} \ S ′ at each
iteration; thus, requiring a total of O(Nn2). In addition,
each time a different subset is considered a inverse of a
matrix has to be computed to obtain Σizk−1

(J ) (see (6)),
as well as its inverse, which requires O((kn)3) operations,
for a specific floating-point precision. Finally, we notice
that the outer for-loop corresponds to the bissection method,
where the number of iterations required to ensure a given
approximation error ε from the optimal value is greater
or equal to log(cmax−cmin)−log(ε)

2 , where cmax and cmin are
the endpoints of the interval used as starting point to the
bissection methods, as described in Algorithm 1. Hence, the
overall computational complexity follows.

Furthermore, unless P=NP, there is no algorithm that
improves on the optimality guarantees of Theorem 3, as
shown in the following.

Theorem 4: Let δ : Z+ → Z+, and suppose that there
is a polynomial-time algorithm for P2 that returns a set S′

satisfying

|S′|
|S∗|

≤ 1 + log

{
F
c
({1, . . . , n})− F c(∅)

F
c
({1, . . . , n})− F c(ST−1)

}
− δ(n)

(10)
for any instance of the sensor placement problem, then
P=NP. �

Proof: Let U and T1, . . . , Tm define an instance of
the hitting set problem, and construct an instance of the
robust sensor placement problem with α = 1, C(x0) = I ,
C(wk) = I , and A(l) defined for l = 1, . . . , N by (9). Select
a parameter c by

c = min
l,J

{
log det

(
Σlzk−1

(J )
)

: J ∩ Tl 6= ∅
}
.

We have that c > 0 since any hitting set satisfies
log det

(
Σlzk−1

(J )
)
> 0. Under this choice of c, the value

of F ci (J ) is equal to c if J ∩Ti 6= ∅ and 0 otherwise. Hence,
F c(ST−1) ≤ 1

N ((N − 1)c), F c(∅) = 0, F c(V ) = 1.
By assumption, there is a polynomial-time algorithm sat-

isfying

|S′|
|S∗|

≤ 1 + log

{
F
c
({1, . . . , n})− F c(∅)

F
c
({1, . . . , n})− F c(ST−1)

}
− δ(n)

≤ 1 + logN − δ(n)

implying that there is a polynomial-time algorithm for hitting
set problem with an optimality bound strictly better than
logN , and hence P=NP by [16].

IV. EXAMPLES AND DISCUSSION

First, we notice that by considering Algorithm 1 when
the scenario described in Section III-B is consider leads to

the optimal solution depicted in blue in Table I. Therefore,
we can argue that the proposed methods works in a setup
where previously available tools fail. Next, we consider a
64-channel electroencephalogram (EEG) data set associated
with different motor and imagery tasks [17], acquired with
the BCI2000 system with a sampling rate of 160Hz [18].
More specifically, in these tasks, the subjects sit in front of a
screen where targets might appear at the right/left/top/bottom
side of the screen. Upon identifying the target, each subject
is asked to open and close the corresponding fists or feet as
a function of where the target appears. Different individuals
performed 14 experimental runs consisting of one minute
with eyes open, one minute with eyes closed, and three two-
minute runs of 4 interacting tasks with the target: (Task 1)
open and close left or right fist as the target appears on either
left or right side of the screen; (Task 2) imagine opening and
closing left or right fist as the target appears on either left or
right side of the screen; (Task 3) open and close both fists or
both feet as the target appears on either the top or the bottom
of the screen and (Task 4) imagine opening and closing both
fists or both feet s the target appears on either the top or the
bottom of the screen.

We consider one individual, and estimated the coupling
matrices and different fractional-order parameters associated
with the different tasks (i.e., scenarios) [5]. In addition to the
four different scenarios, we assumed that the disturbance co-
variance across time is given by the identity matrix, whereas
the initial state covariance captures the spatial impact of
the disturbance, i.e., is given by C(x0) = AC(w0)Aᵀ.
Furthermore, we assumed the measurements error’s covari-
ance to be described by 0.1I64, and we aimed to consider
an estimate after k ∈ {1, 4} time steps, while prescribing
r ∈ {1, 2, . . . , 14} sensors, and within an approximation of
0.1 of the optimal value.
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Fig. 1. This figure exhibits the total number of sensors obtained with the
proposed algorithm when the prescribed number of sensors is r, and k time
steps are considered for estimation.

The results are plotted in Fig. 1 and Fig. 2, where
we depict the number of sensors obtained and the objec-
tive value achieved, respectively. It is worth noticing that
more time estimate, i.e., to collect data and compute an
estimate, the better is estimation of the state, i.e., lower
uncertainty of the state estimate, which is supported by
the fact that lower values of c are achieved with a larger
number of time steps used for estimation. Specifically, by
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employing Algorithm 1 when we seek to estimate the
state in one time step with 14 sensors (the same number
of sensors utilized in some of the commercially available
technology, e.g. (Emotiv-Epoc) [19]), we obtain J ′ =
{25, 63, 41, 11, 42, 9, 28, 49, 43, 19, 46, 44, 15, 60, 1}, whose
order is consistent with the selection of sensors. In addition,
the final value of c equals −191.7725. In Figure 3, we depict
the location of the sensors determined by our approach and
those currently used in Emotiv-Epoc. Therefore, one may
argue that the location of the sensors has to be revisited
aiming the use of system theoretical properties that could be
leveraged to develop better and more reliable brain-machine
interfaces.
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Fig. 2. This figure describes the objective value c achieved for each problem
where the time horizon is k.

V. CONCLUSIONS AND FUTURE RESEARCH

We considered the problem of sensors placement to esti-
mate the state of a plant described by discrete-time fractional-
order system. More specifically, we assumed that these sys-
tems’ parameters and disturbance/measurement noise char-
acteristics describe possible scenarios, and the goal was to
select a subset of sensors that will optimally perform (in a
minimum squared error sense) among multiple (finite) sce-
narios. We showed this problem to be NP-hard, and provided
a bisection algorithm with suboptimality guarantees, and
showed that no other algorithm ensures better performance
under the same set of assumptions. Finally, as proof-of-
concept we presented some simulations that illustrate the
applicability of the main results in a electroencephalogram
data associated with four different tasks. In addition, we
conclude that the location of sensors in some of the current
technology can be re-design to obtain optimality with respect
to state estimation-metrics, as explored in this paper.

Future research focus in exploring the existence of metrics
that capture estimation of the state, as well as the identifi-
cation of the models. In addition, we seek to derive faster
computationally schemes for possible online implementation,
e.g. recursive schemes. Also, we are interested in understand-
ing performance issues in the context of closed-loop systems,
with potential application on the development of a principled
analysis and design of brain-machine-brain interfaces.
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