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ABSTRACT
We consider a variant of the well-known Susceptible-Infected-
Susceptible (SIS) network spreading model, and present a
virus control strategy in which nodes in a network are in
sleep state or awake state with certain probabilities. Nodes
in sleep state are assumed to have a lower infection rate rel-
ative to nodes in awake state, hence lower exposure levels
to a viral attack on the network. The strategy presented is
inspired by the notion of bacteria colony persistence to an-
tibiotics in which certain bacteria in the colony hibernate or
switch to dormant states as a way of reducing their exposure
to antibiotics and helping the colony withstand the effects of
the antibiotic attack. Based on a simplified model of persis-
tence, we present a threshold above which a small infection
may become an epidemic. Further, we consider the problem
of designing the probability of each node being in sleep (less
infectious) state with the least effort, allowing the network
to control the spread of an infection. Our design strategy
for the probabilities of being in sleep state exploits the diag-
onal dominance property of a non-convex constraint, which
enables relaxation of the problem to a Linear Program, for
which we compute an exact solution using only local infor-
mation. Finally, via simulations, we show that the proba-
bility of being in sleep state, resulting from our relaxation
does, indeed, exploit the network structure in controlling the
virus spread.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Optimization, Networks
and Graphs
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Virus propagation; Convex optimization; Network assorta-
tivity.
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1. INTRODUCTION
As networks become ubiquitous they also become prone

to strategic attacks aimed at causing widespread damage
in minimal time. A malicious intruder can, for instance,
manipulate or infect one node in the network and have the
infection spread to other nodes over time. Occurrence of
such attacks are pervasive; examples of this infection spread
can be found in computer networks [1], wireless devices, or
human populations. Modelling spreading processes in net-
works is an important topic in epidemiology and has recently
attracted substantial research attention. Several determin-
istic and stochastic models have been proposed to model the
spread of biological diseases. A literature review on mod-
elling of epidemics in human populations can be found in
[2]. An important concept in mathematical analyses of epi-
demiological models is the existence of a threshold beyond
which a small infection can result in an epidemic. Most re-
cent models represent individuals as nodes or agents that
interact in a contact network represented by a graph. In
these graph-based models, the epidemic threshold is equal
to the inverse of the spectral radius of the contact graph [3,
4, 5].

We investigate how epidemic models can be used to de-
sign switching strategies to boost the resilience of the agent
population against a contagion. The usual recourse to tackle
this problem is to consider immunizing or isolating infected
infected nodes. In computer networks, for instance, a solu-
tion to the spread of viruses is to install an anti-virus soft-
ware to clean out the infected computers before the attack
spreads to other computer systems on the network. While
this approach may work, resources available for anti-viruses
or other forms of immunization are usually limited. De-
termining minimal-cost ways to control and minimize the
spread of such network attacks becomes imperative. Though
some work has been done on the problem of controlling in-
fection spread in networks, [6, 7]; the approaches presented
tend to address the problem from the angle of expending
some limited immunization resource.

As an alternative to existing works, we propose a bio-
inspired strategy to address the problem of controlling a vi-
ral spread in a network. The method we present is inspired
by bacteria reaction to antibiotics. In particular, our work
is inspired by a contagion mitigation strategy well studied
in bacteria colonies termed persistence (we refer readers to
[8, 9, 10] for more information on this behavior). In bacteria
colonies, a small portion of the population go into sleep or
dormant states, thereby significantly reducing their exposure
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to attack (by the antibiotic); thus, strengthening the ability
of the colony to survive the antibiotic attack and avoid ex-
tinction. A more recent work in the control theory research
community studying this bacterial phenomenon appears in
[11]; where the authors develop a population dynamic model
and design methods to minimize the fraction of the network
that transition into long-term dormancy using tools from
optimal control. Attempts have also been made to link this
trait, observed in bacteria, to strategies in human adapta-
tion and survival [12].

In this work, we mathematically formalize a notion of per-
sistence in a networked setting, and study the problem of de-
termining the optimal probabilities of nodes to be in sleep
state to prevent a small infection from resulting in an epi-
demic in the network. We present this strategy as a tool that
can be used to defend networks against a viral attack. We
employ well-studied, epidemiology-based models to describe
a virus spread in a network [13, 14, 15], with a goal of study-
ing the interplay between the probabilities of being in either
sleep or awake state and our adapted model of a virus prop-
agation rate from [3]. For our model, we derive a tipping
point, by presenting conditions under which the likelihood
of infection at each node converges to zero. Furthermore,
we consider the problem of optimally designing the proba-
bilities of being in sleep state for the nodes and formulate
the problem via a principled convex programming.

The organization of the paper is as follows: In section 2,
we briefly review the SIS spreading model, our adapted SIS
model and state our problems. Section 3 comprises results
on stability of the model presented in 2. We discuss the
design of sleep probabilities in section 4, following up with
simulations to validate our results in Section 5. In section
6, we introduce assortativity and an important notion of
centrality measure in communication networks – between-
ness centrality [16, 17]. We numerically show that network
structural properties does affect the distribution of protec-
tion resources - probabilities of being in sleep mode to pre-
vent an epidemic. In particular, we find that networks with
highly assortative mixing patterns have low correlation be-
tween distribution of sleep probabilities and the betweenness
centrality measure. Concluding remarks follow in Section 7.

2. PROBLEM FORMULATION
In this section, we briefly review the SIS model developed

in [3]. We then introduce the SIS model with sleep and
awake states as the basis for our developments. First, we
introduce some graph-theoretical nomenclature.

Graph theory is the primary mathematical tool to repre-
sent the contact topology in an epidemic network. Let G =
(V,E) represent a directed graph, with V = {1, ..., n} being
the set of nodes, and E ⊆ V × V being the set of edges. In
our model, every agent is represented by a node. We assume
that G is a simple graph with unweighted, undirected edges
and no self-loops. We denote by Ni = {j ∈ V : {i, j} ∈ E}
the neighborhood set of node i. We can represent the graph
structure using the adjacency matrix A = [aij ] ∈ Rn×n,
where aij = 1 if and only if {i, j} ∈ E, otherwise aij = 0.
The largest magnitude of the eigenvalues of the adjacency
matrix A is called the spectral radius of A and is denoted
by ρ(A).

2.1 Standard SIS Model
A set of difference equations was derived in [3], represent-

ing the time evolution of the probability of infection for each
individual in a network of agents following the SIS epidemic
model. In this model, a network of n individuals is con-
sidered where each individual is represented by a node and
the contact topology is represented by a graph G. A dis-
ease in this model is characterized by infection rate β ∈ R+

and curing rate δ ∈ R+. The SIS model describes the time
evolution of the infection probability of the i-th individual,
denoted by pi ∈ [0, 1], as

pi (t+ 1) = 1−
∏
j∈Ni

(1− βpj (t))− δpi (t) .

After linearizing the above nonlinear, discrete-time model,
[3] obtained the following result:

Theorem 1. If an epidemic dies out, then it is necessar-
ily true that ρ(A) < δ/β, where β is the birth rate, δ is the
curing rate and ρ(A) is the largest eigenvalue of the adja-
cency matrix A.

This result provides a simple epidemic threshold for arbi-
trary graphs, such that if the threshold condition is satisfied
the epidemic dies out. In the following, we obtain a simi-
lar result for the case in which we allow nodes to randomly
switch between two states: sleep and awake.

2.2 Hybrid SIS Model
In our model, we assume that each node (regardless of

their infection level) or likelihood of infection, can be in one
of three states – awake, sleep or infected. Our model is an ex-
tension of the traditional SIS model. In particular, we split
the susceptible state into two different classes of suscepti-
bility – sleep and awake. These two states are qualitatively
similar to the susceptible state in the SIS model and their
only difference is in the probabilities of infection. All nodes
in the sleep state have an infection rate βs and a node in
the awake state have a higher infection rate βa > βs. We
also assume that all nodes in the network, independent of
which state they are in, have a common virus curing rate δ.
The curing rate, δ, can be interpreted as a degree of ’natural
immunity’ that each node in the network has, irrespective
of its state.

Our model assumes that the probability of being in sleep
state for node i is li (and the probability of being in awake
state is 1 − li). At each time step, each node randomly
chooses to be awake or asleep, independent of its previous
state and the state of its neighbors.

This implies that the infection rate of node i at time t,
denoted by bi(t), is a random variable which is equal to
βs with probability li, and is equal to βa with probability
1 − li. Assuming a discrete-time set-up, at each time-step
t, each node i has a probability pi(t) of being infected at
time t. The evolution of the marginal probability of infec-
tion can be exactly described via a Markov chain with 3n

states, which in general is extremely large to be of practi-
cal interest. Following the mean-field approach proposed in
[3], we can approximate the dynamics of the Markov Chain
that describes the evolution of the probability of infection
at each node. Furthermore, we can linearize the mean-field
dynamics around the infection-free state. Following these
steps, the evolution of the probability of infection for node
i is given by
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pi(t+ 1) = li βs
∑

j∈N(i)

aijpj(t) (1)

+ (1− li)βa
∑

j∈N(i)

aijpj(t) + (1− δ)pi(t),

which, defining p(t) = (p1(t), . . . , pN (t))T , can be written in
matrix-vector form as

p(t+ 1) = BAp(t) + (1− δ)Ip(t), (2)

where the matrix A is the adjacency matrix of the network
and B is the diagonal matrix B = diag(βsli + βa(1 − li)).
We denote by L the diagonal matrix L = diag(li).

The first part of our work considers a case where all nodes
in the network have a homogeneous probability of being in
sleep state; that is, li = l. The later part of our analyses
considers a heterogeneous model where each node i has a
certain probability of being in sleep rate li, which results in
a particular profile for the infection rate bi = βsli+βa(1−li).
Based on (2), next, we state the specific problems addressed
in this paper.

2.3 Problem Statements
Given the above model and evolution of probability of

infection in (2), we present the problems considered in this
work.

Problem 1. (Epidemic Threshold) Given a network in
which nodes have a probability of infection evolving according
to (2), what is the point beyond which an infection on one
node can propagate and infect other nodes resulting in an
epidemic in the network?

Problem 2. (Homogeneous Design) Under the assump-
tion that all nodes have a common probability of being in
sleep state; that is, li = l ∀i, what should the optimal prob-
ability of being in sleep state be to prevent a virus infection
on one node from resulting in an epidemic?

Problem 3. (Heterogeneous Design) Let each node i have
a distinct probability, li, of being in sleep state. What is the
optimal li to prevent an epidemic?

To approach the last problem, we derive near-optimal
probabilities of being in sleep state via a convex relaxation.
These problems are discussed in Sections 3 and 4.

3. STABILITY ANALYSIS
In this section, we consider the stability of (2) when the

nodes in the network have a common probability of being
in sleep mode. Following an approach similar to the one
proposed in [3], we obtain the following result:

Theorem 2. Given the discrete-time linear system (2),
and any initial condition p(0), the probability of infection
p(t) converges to 0, as t→∞ if and only if

ρ(A) <
δ

lβs + (1− l)βa
. (3)

Proof. (Theorem 2) To study the stability of the lin-
earized model in (2), we only need to locate the eigenvalues
of the transition matrix BA + (1 − δ)I. It is easy to prove
that the eigenvalues of this transition matrix are

λi(BA+ (1− δ)I) = biλi(A) + 1− δ,

where B = diag(bi) with bi = bj , for all pairs i, j. Hence,
for all the eigenvalues of the transition matrix to be in the
unit circle, we need the condition in the statement of the
theorem to hold.

For a network under a virus attack, assuming the infection
rates for nodes in sleep state in any network varies from those
in awake states, a conclusion we can draw from Theorem 2
is that with control over the probabilities of being in sleep or
awake state, the network can protect itself from an attack by
having some nodes switch to sleep states to prevent a small
infection from resulting in an epidemic and destabilizing the
network. Two notable things about this resilience strategy
are that no assumptions on the network structure are made;
second, it is a network protection method that requires no
resources for protection - a passive protection strategy, since
some nodes only need to be in sleep state to reduce exposure
to a virus attack.

4. DESIGN PROBLEM
Having established the epidemic threshold, we now con-

sider a design problem of determining optimal probability
of being in sleep state to minimize the spectral radius of the
system matrix in (2). We consider this problem in two cases:

1. Homogeneous probabilities – In this instance, all nodes
have the same probability of being in sleep state, in
which case the matrix B can be expressed as B = bI.

2. Heterogeneous probabilities – Each node has a distinct
probability of being in sleep state, in which case, B =
diag(bi), for i = 1, . . . , N .

4.1 Homogeneous Sleep Probability
The goal here is to put only few nodes to sleep, by finding

the minimum possible common probability of being in sleep
state for all nodes, such that the probability of infection, p(t)
converges to 0. In other words, we interpret the probability
of being in sleep state as a cost, which we want to minimize.
We formulate this as the following optimization problem –

minimize
l

l

subject to (l(βs − βa) + βa)ρ(A) + 1− δ ≤ 1,

0 ≤ l ≤ 1,

(4)

which is equivalent to

minimize
l

l

subject to (l(βs − βa) + βa)ρ(A) ≤ δ,
0 ≤ l ≤ 1.

(5)

As seen in (5), the problem of optimally designing a common
sleep probability l, subject to stability constraint is a linear
program.

Proposition 1. The linear optimization problem (5) has
a unique optimal solution.

Proof. To prove this, note that though the feasible set
is constrained, it is non-empty, and imposes a bound on the
objective function. Recall that the epidemic threshold is
ρ(A) < δ

l(βs−βa)+βa . To get the optimal l, which we denote

as l∗, we solve (5) for the l that makes the inequality binding.
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Doing so yields

l ≤

(
δ

ρ(A)
− βa

)
βs − βa

.

In other words,

l∗ = inf

{
l | ρ(A) ≤ δ

l(βs − βa) + βa

}
,

which implies that if the common probability of being in
sleep state is l ≥ l∗, an epidemic is prevented; and if l < l∗,
an epidemic results. We note that a trivial solution l = 0
will be infeasible, since (4) needs to be satisfied.

4.2 Heterogeneous Sleep Probabilities
In this case, the nodes have distinct probabilities of being

in sleep mode, li, which we want to minimize, subject to sta-
bility of (2). A related problem was addressed in [18], where
the proposed virus taming strategy was to allocate resources
in a way that equalizes the propagation impact of each net-
work component. Here, we adopt a disciplined convex for-
mulation of the problem and present a convex relaxation
that efficiently, and using only local information, designs the
probability of being in sleep state. Our solution in this het-
erogeneous case has a closed-form expression, and requires
only local information. Recall that B = βa(I − L) + βsL,
where L = diag(l1, . . . , lN ) is a diagonal matrix of the prob-
abilities of being in sleep state. We formally state the opti-
mization problem below:

minimize
li

N∑
i

li

subject to ρ(BA) ≤ δ,
B = βa(I − L) + βsL

0 � L � I.

(6)

Since B is a function of L and βs < βa, we reformulate (6)
in terms of B, and make B the optimization variable. If
we apply Perron-Frobenius Theorem to the spectral radius
constraint in (6), the problem is equivalent to

maximize
B

Trace B

subject to δB−1 −A � 0

βsI ≤ B ≤ βaI.

(7)

First, we note that though problem (7) has a linear cost
function, it is not a convex program because of the nega-
tive exponent in the first summand of the Semidefinite con-
straint. To address the challenge of nonconvexity from the
Semidefinite constraint, we shall use a sufficient condition
on diagonally dominant matrices, and eventually arrive at
an elegant linear program.

Definition 1. A matrix is said to be diagonally domi-
nant if for every row of the matrix, the magnitude of the di-
agonal entry in each row is larger than or equal to the sum of
the magnitudes of the off-diagonal entries of that row. More
formally, the matrix Z is diagonally dominant if

|zii| ≥
∑
j 6=i

zij ∀ i.

Lemma 1. A diagonally dominant symmetric matrix with
non-negative diagonal entries is positive semidefinite.

See [19] for a proof of Lemma 1. Because we do not allow for
self-loops in the network, the diagonal entries of the network
adjacency matrix A are 0, and the sum of the off-diagonal
entries of row i is the degree of node i in the network, which
we denote as deg(i). In scalar form, we can express the
Semidefinite constraint δB−1 − A � 0 as δ

bi
− deg(i) ≥ 0,

for each node i, where bi is the ith element of the diagonal
matrix B in (7), and deg(i) denotes the degree of node i.
We can express the constraint δ

bi
− deg(i) ≥ 0 as

bi ≤
δ

deg(i)
. (8)

In light of this relaxation, we reformulate problem (7) as an
linear program as follows

maximize
bi

N∑
i=1

bi

subject to bi ≤
δ

deg(i)

βs ≤ bi ≤ βa,

(9)

from which we derive the closed-form solution

bi = min

{
βa,

δ

deg(i)

}
. (10)

After deriving bi for node i in (10), it is trivial to solve for
the probability of being in sleep state li.

Remark 1. It is remarkable that the solution obtained for
the sleep probabilities in the heterogeneous case depend only
on local information – individual node degrees. This means
that the probability of being in sleep state for each node, can
be computed independent of other nodes and complete knowl-
edge of the network. We note that this solution is particu-
larly applicable to large networks where significant costs can
be incurred by centrally determining a policy for the prob-
ability of being in sleep state and communicating it to the
nodes.

5. SIMULATIONS AND DISCUSSIONS

5.1 Simulations Parameters
In this section, we present results of experiments, indi-

cating how the probabilities of being in sleep states li is
distributed across the nodes in the network. We solve the
problem for a small world network model, and Erdos-Renyi
network model as well as networks with homogeneous de-
grees. For the experiments, we consider a network of size
n = 300, using a fixed curing rate of δ = 0.04, sleep state
infection rate of βs = 0.5 δ

ρ(A)
and awake state infection rate

of βa = 1.5 δ
ρ(A)

. In the simulations, we compare how the

probabilities of being in sleep state vary with common net-
work centrality measures including eigenvector, betweenness
and degree centralities.

5.2 Homogeneous Degree Network
For a network with homogeneous node degrees, we can

see in Figure 1 that the optimal probability of being in sleep
state to prevent an epidemic is uniform across all nodes in
the network, as expected.
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Figure 1: Figure showing sleep probabilities for a
complete network

5.3 Erdos-Renyi Network
For an Erdos-Renyi graph with a link probability of 0.13,

having a degree distribution that is approximately Poisson,
we see that the optimal solution is to allocate higher sleep
probabilities to high degree nodes, establishing a largely pos-
itive correlation between the sleep probabilities and different
network centrality measures, as can be seen in Figure 2.

Figure 2: Figure showing sleep probabilities for
nodes in an Erdos-Renyi network

5.4 Small-World Network
Finally, we implement our result on a small world network

comprising N = 300 nodes with probability 0.1 of rewiring
each edge. In the small world network, a positive correla-
tion between the probabilities of being in sleep mode and
different network centrality measures is also observed. This
is captured in Figure 3.

Figure 3: Figure showing sleep probabilities for
nodes in a small world network

6. EFFECTS OF NETWORK STRUCTURE
In this section, we briefly introduce assortative mixing

patterns in networks, eigenvector and betweenness centrality
measures to demonstrate the effect of the network structure
on the distribution of the sleep probabilities. The aim of this
section is to numerically highlight how the network structure
affects the distribution of the sleep probabilities.

6.1 Assortativity in Networks
Assortativity is a property of networks that explains its

mixing pattern – the tendency for a node to donnect pri-
marily with other nodes of similar degree. Examples of
networks exhibiting this property include social networks
[20, 21] where people who have similar tastes or interests
are more likely to connect and establish relationships with
one another. Disassortativity explains the converse concept
where nodes with high degrees connect to low degree nodes.
Assortativity and disassortativity are typically used to ex-
plain structural properties in networks and quantify the like-
lihood for preferential association within the network [22].
More formally,

Definition 2. The (un-normalized) assortativity of a net-
work, can be defined as

R =
∑

1≤{i,j}≤N

didj , (11)

where di and dj are the respective degrees of nodes i and j.

6.2 Centrality
Centrality measures in networks are metrics used to cap-

ture the level of importance of a given node relative to other
nodes in the networks.1 Here, we focus on betweenness cen-
trality, partly because of its importance as an index in epi-
demiology and communication networks [16, 17].

1For more on centrality measures, we refer readers to [23].
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Figure 4: Network centrality depiction

6.2.1 Betweenness Centrality
It is a measure that indicates how relevant a node is in

a network using shortest path routing. More formally, the
betweenness centrality of a given node i is

BC(i) =
∑

k 6=j:i6∈{k,j}

Pi(k, j)/P (k, j)

(N − 1)(N − 2)/2
,

where Pi(k, j) denotes the number of geodesics (shortest
paths) between nodes k and j, that includes i, P (k, j) is the
total number of geodesics between k and j. As an example,
the red-colored node in Figure 4 has the highest betweenness
centrality measure.2

6.2.2 Eigenvector centrality
Uses the principal eigenvector of the network adjacency

matrix as a measure of importance in the network. More
formally, suppose A = [aij ] is the adjacency matrix of the
graph, and aij = 1 if node i is connected to node j, and
aij = 0, otherwise. The eigenvector centrality score xi of
node i is

xi =
1

λ

∑
j∈G

aijxj ,

where λ is a proportionality factor, typically the principal
eigenvalue.

6.3 Graph Rewiring

6.4 Rewiring
To modify the degree assortativity of the network, we

carry out a degree-preserving rewiring, which has been stud-
ied in different contexts [24, 25]. This rewiring can be de-
scribed as follows: We pick two edges at random. Let’s
assume that those edges are {i, j} and {r, s}. Notice that a
rewiring comprising the removal of edges {i, j}, {r, s}, while
adding the edges {i, s}, {r, j} does preserve the degrees of
nodes i, j, r, s. We can compute the effect of this rewiring
on the assortativity as follows

4Rr,si,j = didj + drds − (dids + drdj). (12)

If 4Rr,si,j is greater than 0, the rewiring increases the assor-
tativity of the network. On the other hand, if 4Rr,si,j is lower

2Depending on a network attack objective, the red node is
a target.

than 0, the network assortativity is reduced. We can sample
through as many edges as we desire, using (12) to deter-
mine whether to rewire or not, to tune the assortativity of
a network.

6.4.1 Small World Network
We generated a small world network via the following pa-

rameters N = 500 nodes, with probability 0.15 of rewiring
each edge. The assortativity coefficient was first −0.0083.
After allowing up to 105 rewirings, the assortativity coeffi-
cient was increased to 0.8403. Figure 5 shows the relation
between the probabilities of being in sleep state and the
centrality measures for the original and rewired network.
As can be seen, the positive linear correlation between the
sleep probabilities and the betweenness centrality measure
drops from 0.8014 in the original network to 0.0709 in the
rewired network with increased assortativity. And the cor-
relation coefficient between the distribution of sleep proba-
bilities and the eigenvector centrality measure changes from
0.8917 to 0.9428.

Figure 5: Comparing probabilities of being in sleep
state with network Assortativity for a Small World
network.

6.4.2 Erdos-Renyi Network
Here, we use N = 500 nodes, with an edge probability of

0.13. The assortativity coefficient was first −0.0050. After
allowing up to 105 rewirings, it was upped to 0.7535. Via the
same relaxation of the previous section, we were able to solve
the problem for both the original and rewired networks. In
Figure 6, the correlation coefficient between the distribution
of sleep probabilities and the betweenness centrality measure
changes significantly. In particular, it falls from 0.9619 for
the original network to 0.0941 for the graph with increased
assortativity. And the correlation coefficient between the
distribution of sleep probabilities and the eigenvector cen-
trality measure drops from 0.9818 to 0.9451. Figures 5 and
6 indicate that the network structural property affects how
the virus spread is controlled.
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Figure 6: Comparing probabilities of being in sleep
state with network Assortativity for an Erdos-Renyi
network.

7. CONCLUSIONS
We presented a model of the concept of persistence (ob-

served in bacteria colonies), in a networked setting and pre-
sented it as a tool that can be used to prevent a network
attack from resulting in an epidemic. Based on our model
of persistence, we derived a tipping point under which the
probability of infection at each node of the network con-
verges to zero. We also formulated the problem of designing
optimal sleep probabilities for nodes in network to ensure
an epidemic does not result when the network is under at-
tack. Simulations based on the results from our relaxation
showed a positive correlation between the probability of be-
ing in sleep state and different network centrality measures.
Our simulations, in addition, show that the positive corre-
lation holds for networks with neutral mixing patterns.

Some ongoing work include characterizing other convex
approximations and heuristics for our heterogeneous opti-
mization problem, in addition to computing bounds for our
relaxation. In a related work, we are studying the problem
of simultaneously controlling a contagion, while maximiz-
ing information flow in a communication network. We also
plan to carry out analyses on the findings highlighted in the
preceding section, as understanding the effects of network
structural properties on distribution of protection resources
can help in the design of resilient cyber-physical networks.
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