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Abstract— We consider the problem of stabilizing a plant
with a network of resource constrained wireless nodes. Tradi-
tional networked control schemes are designed with one of the
nodes in the network acting as a dedicated controller, while the
other nodes simply route information to and from the controller
and the plant. We introduce the concept of a Wireless Control
Network (WCN) where the entire network itself acts as the
controller. Specifically, at each time-step, each node updates its
internal state to be a linear combination of the states of the
nodes in its neighborhood. We show that this causes the entire
network to behave as a linear dynamical system, with sparsity
constraints imposed by the network topology. We then provide
a numerical design procedure to determine the appropriate
linear combinations to be applied by each node so that the
transmissions of the nodes closest to the actuators will stabilize
the plant. We also show how our design procedure can be
modified to maintain mean square stability under packet drops
in the network.

I. INTRODUCTION

The advent of low-cost and reliable wireless networks

holds great promise for large, spatially distributed industrial

control systems. In contrast to the traditional wired intercon-

nections that exist in such systems, wireless networks allow

sensor measurements of plant variables to be transmitted to

controllers, data centers and plant operators without the need

for excessive wiring, thereby yielding gains in efficiency and

profitability for the operator.

The topic of control over networks has been intensively

studied by researchers over the past decade, leading to design

procedures for controllers that are tolerant to network issues

such as packet dropouts and transmission delays [1], [2], [3],

[4], [5], [6]. These works typically adopt the convention of

having a dedicated controller/estimator located somewhere

in the network, and study the stability of the closed loop

system assuming that the sensor-estimator and/or controller-

actuator communication channels are unreliable (dropping

packets with a certain probability, for example).

In this paper, we introduce the concept of a Wireless

Control Network (WCN), which is a paradigm change for

control over a wireless network. In a WCN the entire network

itself acts as a controller, as the computation of the control

input is spread over the whole network. We consider a

setup where several resource constrained wireless nodes are

deployed in the proximity of a plant, with some nodes

having access to the sensor measurements (outputs) of the
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plant, and some nodes placed within the listening range of

the plant’s actuators. Each node in the WCN is capable of

maintaining only a limited internal state. We present a linear

iterative strategy for each node to follow, where each node

periodically updates its state to be a linear combination of

the states of the nodes in its immediate neighborhood. The

actuators of the plant also apply linear combinations of the

states of the nodes in their neighborhood. Given a linear plant

model and the topology of the wireless network, we devise a

numerical design procedure that produces the coefficients of

the linear combinations for each node and actuator to apply

in order to stabilize the plant.

A. Notation

We use ei to denote the ith unit column vector (of

appropriate dimension) and the symbol 1 denotes the column

vector (of appropriate size) consisting of all 1’s. The symbol

IN denotes the N ×N identity matrix. The notation diag (·)
indicates a square matrix with the quantities inside the

brackets on the diagonal, and zeros elsewhere. The notation

tr (·) indicates the trace of a square matrix. We will denote

the cardinality of a set S by |S|. The set of nonnegative

integers is denoted by N. The notation A � 0(� 0)
indicates that matrix A is positive (semi)definite. The set

of all n × n positive definite matrices is denoted by S
n
++.

A graph is denoted by an ordered pair G = {V, E}, where

V = {v1, v2, . . . , vN} is a set of vertices (or nodes), and E
is a set of ordered pairs of different vertices, called directed

edges. The vertices in the set Nvi
= {vj |(vj , vi) ∈ E} are

said to be neighbors of vertex vi.

II. THE WIRELESS CONTROL NETWORK

Consider the system presented in Fig. 1, where the plant

is controlled using a multi-hop, fully synchronized wireless

network. In this paper we focus on plants of the form1

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k],
(1)

with A ∈ R
n×n,B ∈ R

n×m and C ∈ R
p×n. The

output vector y[k] =
[
y1[k] y2[k] . . . yp[k]

]T
con-

tains measurements of the plant state vector x[k] pro-

vided by the sensors s1, . . . , sp. The input vector u[k] =[
u1[k] u2[k] . . . um[k]

]T
corresponds to the signals ap-

plied to the plant by actuators a1, . . . , am.

1The plant model can be generalized to include update and measurement
noise; if the noise is taken to be independent and identically distributed with
a bounded variance, all of our analysis and results will still ensure that the
system state is bounded in a mean square sense. For the purposes of clarity,
we will therefore omit the noise terms in our discussion.
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Fig. 1. A multi-hop WCN used as a distributed controller.

The WCN consists of a set of nodes that communicate

with each other and with the sensors and actuators installed

on the plant. Each node in the network is equipped with

a radio transceiver along with (limited) memory and com-

putational capabilities.2 Similarly, each sensor and actuator

on the plant contains a radio transceiver, allowing them

to communicate with neighboring nodes. The wireless net-

work is described by a graph G = {V, E}, where V =
{v1, v2, . . . , vN} is the set of N nodes and E ⊆ V × V
represents the radio connectivity (communication topology)

in the network (i.e., edge (vj , vi) ∈ E if node vi can receive

information directly from node vj). We also define VS ⊂ V
as the set of nodes that can receive information directly from

at least one sensor, and VA ⊂ V as the set of nodes whose

transmissions can be heard by at least one actuator.

To facilitate our development, we consider a new graph

Ḡ that includes the plant’s sensors and actuators. This graph

is obtained by taking the graph G and adding p + m new

vertices S ∪ A, where S = {s1, s2, . . . , sp} corresponds to

the plant’s sensors, while A = {a1, a2, . . . , am} corresponds

to the plant’s actuators. Define the edge sets:

EO =

{
(sl, vi)

sl ∈ S, vi ∈ VS ,
vi can receive values from sensor sl

}
,

EI =

{
(vi, al)

al ∈ A, vi ∈ VA,
actuator ai can receive values from vi

}
.

We then obtain Ḡ = {V∪S∪A, E∪EI∪EO}. Let Nl denote

the number of links in Ḡ (Nl = |E ∪ EI ∪ EO|). We can also

define an injective mapping Ω : E ∪ EI ∪ EO → {1, . . . , Nl}
to enumerate all links in the network. In the rest of the paper,

we will sometimes denote a link (a, b) ∈ E ∪ EI ∪ EO by its

label Ω(a, b) for convenience.

Unlike traditional networked control schemes where a

particular node vi ∈ V is designated as the controller (and all

other nodes are used to route information between vi and the

plant), the WCN employs a fully distributed control scheme

where the entire network itself acts as a controller. At each

time-step, every node in the WCN updates its value to be

a linear combination of its previous value and the values

of its neighbors. In addition, the update procedure of each

node from the set VS includes a linear combination of the

sensor measurements (i.e. plant outputs) from all sensors in

2We will model these resource constraints by limiting the size of the state
vector maintained by each node. To present our results, we will focus on
the case where each node’s state is represented as a scalar. Our results can
be readily extended to the more general case where each node can maintain
a vector state with possibly different dimensions. For details see [7].

its neighborhood. If we let zi[k] denote node vi’s (scalar)

state at time step k, we obtain the update procedure:3

zi[k+1] = wiizi[k]+
∑

vj∈Nvi

wijzj [k]+
∑

sj∈Nvi

hijyj [k]. (2)

Each plant input ui[k], i ∈ {1, . . . ,m} is taken to be a linear

combination of values from the nodes in the neighborhood

of the actuator ai:

ui[k] =
∑

j∈Nai

gijzj [k]. (3)

The scalars wij , hij and gij specify the linear combinations

that are computed by each node and actuator in the network.

If we aggregate the values of all nodes at time step k into the

value vector z[k] =
[
z1[k] z2[k] · · · zN [k]

]T
, the linear

iterative procedure for the entire system can be described as:

z[k + 1] = Wz[k] +Hy[k] ,

u[k] = Gz[k]

for all k ∈ N (W ∈ R
N×N ,H ∈ R

N×p,G ∈ R
m×N ). In

the above equation, for all i ∈ {1, . . . , N}, wij = 0 if vj /∈
Nvi ∪ {vi}, hij = 0 if sj /∈ Nvi , and gij = 0 if vj /∈ Nai

.

Thus the matrices W,H and G are structured, meaning that

they have sparsity constraints determined by the topology of

the WCN. Throughout the rest of the paper, we will define

Ψ to be the set of all tuples (W,H,G) ∈ R
N×N ×R

N×p×
R

m×N satisfying the aforementioned sparsity constraints. If

we denote the overall system state by x̂[k] = [x[k]T z[k]T ]T ,

the closed-loop system evolves as:

x̂[k + 1] =

[
A BG

HC W

] [
x[k]
z[k]

]
� Âx̂[k]. (4)

In this paper we describe an algorithm that can be used

to find an element of Ψ that causes the matrix Â to be

Schur (provided such an element exists).4 We first consider

the case with reliable communication links, and then extend

our approach to accommodate independent Bernoulli link

failures in the network. In the companion paper [8], we also

show how to design an “Intrusion Detection System” for this

control scheme, which observes the transmissions of certain

nodes in order to identify any abnormal behavior.

A. Advantages of Wireless Control Networks

In the context of multi-hop embedded wireless networks

used for control, the WCN has the following advantages.

1. Low overhead: The proposed scheme is computationally

inexpensive since a node only needs to compute a linear

combination of its value and values of its neighbors. Thus,

the WCN can be easily implemented even on resource

constrained, low-power wireless nodes (e.g., FireFly, tMote,

micaZ) using very simple, periodic tasks executed on a real-

time operating system (e.g., nano-RK [9] or TinyOS [10]).

Also, as each node is only required to transmit its state once

per frame, the proposed scheme can be easily “piggy-backed”

into existing wireless networks that assign a transmission

3The neighborhood Nv of a vertex v is with respect to the graph Ḡ.
4A matrix is Schur if all of its eigenvalues are inside the unit circle.
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slot for each node to maintain network related information

(e.g., wireless systems for factory automation based on the

ISA100.11a standard [11] or wirelessHART [12]). This also

allows the possibility of using the proposed scheme as a

backup mechanism in traditional networked control systems.

Specifically, if the primary control mechanism (i.e., dedicated

controller) in the existing networked control infrastructure

fails, the wireless network itself can take over the role of

stabilizing the plant until the primary controller is restored.

2. Compositionality: The WCN allows compositionality,

meaning that an existing design can be easily extended

to control new subsystems that are added to the plant.

In subsequent sections we describe how the WCN can be

used to stabilize a given plant (or set of interconnected

plants). However, suppose that some new subsystems (or

plants) are added in the proximity of the WCN. Rather than

recalculating a stabilizing set of linear combinations that

would work for all plants simultaneously, one can instead

calculate a separate stabilizing set of linear combinations for

each of the new plants, with corresponding separate states

maintained by each node. If P is the total number of different

plants, each node would calculate P linear combinations

of the values received from its neighbors and group the P
corresponding states in one transmission per frame.5 This

enables a completely decoupled computation of the matrices

{Wi,Hi,Gi}
P
i=1 that guarantee MSS for each of the P

plants, although physically realized by the same WCN.

3. Simple scheduling: The presented scheme does not

require complex communication scheduling, since each node

needs to transmit exactly once in a frame and the WCN

does not impose end-to-end delay constraints (i.e., nodes

close to the actuators do not need to wait for information

to propagate all the way from the sensors). The only re-

quirement of the communication schedule is to be conflict-

free (i.e., two transmission scheduled at the same slot should

not affect each other). Thus, if di is the maximal degree

of the interference graph,6 a static conflict-free schedule

can be derived using graph coloring, with at most di slots

in a frame. Since the duration of a frame is equal to the

plant’s sampling period, the minimal sampling period of the

plant is equal to diTslot, where Tslot is the duration of a

communication slot. In contrast, some techniques used for

traditional networked control systems impose a requirement

that the sampling period be greater than the end-to-end delay,

causing the minimal sampling period to directly depend on

the network diameter.

4. Multiple sensing/actuation points: The WCN can handle

plants with multiple geographically distributed sensors and

actuators, a case that is not easily handled by the “sensor

→ channel → controller/estimator → channel → actuator”

5This is usually not a limitation even for low-bandwidth 802.15.4 net-
works (where each transmission packet can contain up to 1024 bits). For
instance, if a node maintains a scalar 32 bit state for each plant, then up to
32 plants can be controlled in parallel.

6The interference graph is defined as ḠInt = {V ∪S ∪A, EInt}, where
a link between two nodes (or a node and a sensor/actuator) indicates that
they can interfere with each other (i.e., cannot transmit simultaneously).

setup that is commonly adopted in networked control design.

III. STABILIZING THE CLOSED-LOOP SYSTEM

From Eq. (4), the closed-loop system is stable if the matri-

ces A,W,H are chosen so that Â is Schur. The traditional

approach to achieving this would be to find a positive definite

matrix X satisfying the Lyapunov inequality X−ÂTXÂ �

0, or equivalently,
[

X Â
T
X

XÂ X

]
� 0. The condition is not

linear in the design parameters X,W,H,G; this is of no

consequence in standard controller design (without structural

constraints on the design matrices), because this condition

can be converted to a LMI via an appropriate transformation

of the system matrices (e.g., as done in [13]). However,

the fact that the matrices are structured in our framework

prevents us from directly applying these standard procedures.

Still, the following alternative characterization of stability of

structured systems from [14] offers a solution.

Theorem 1: ([14]) A matrix Â is Schur iff there exist

symmetric, positive-definite matrices X and Y such that[
X Â

T

Â Y

]
� 0, X = Y−1.

The theorem provides a matrix inequality that is linear

in the design variables W,G and H, but suffers from the

fact that the constraint X = Y−1 is nonconvex. However,

as pointed out in [14], constraints of this form commonly

occur in the design of static output feedback controllers, and

there are various numerical methods to address this issue.

One particularly appealing approach, suggested in [15], [16],

is to approximate the constraint X = Y−1 with a linear

optimization problem using the following lemma (the proof

can be obtained in [7]).

Lemma 1: Positive-definite matrices X,Y satisfy the con-

straint X = Y−1 iff they are optimal points for the problem

(P ) : min tr(XY), s.t. X � Y−1, X,Y ∈ S
n
++

and the optimal cost of the problem is n.

Using the Schur complement, the constraint X � Y−1

in the above lemma can be readily transformed to the form

[X I

I Y
] � 0. From Eq. (4), Theorem 1 and Lemma 1 the

following corollary can be obtained.

Corollary 1: The WCN can stabilize the system if and

only if the following optimization problem

min tr(XY), (5)[
X ÂT

Â Y

]
� 0,

[
X I

I Y

]
� 0, (6)

Â =

[
A BG

HC W

]
, (7)

(W,H,G) ∈ Ψ, X,Y ∈ S
n+N
++ (8)

is feasible with optimal cost n+N .

Note that with the exception of the objective function (5),

all of the constraints in the above corollary are linear in the

unknown parameters, and can readily be solved using LMI

tools. In [16], El Ghaoui et al. showed that the nonconvex

function tr(XY) can be replaced with a linear approximation

φlin(X,Y) = constant+ tr(Y0X+X0Y),
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for any given matrices X0 and Y0. With this insight, [15],

[16] showed that an iterative algorithm can be used to mini-

mize tr(XY), while ensuring satisfaction of LMI constraints.

For our application, the iterative approach proposed in those

papers can be formulated as Algorithm 1.

Algorithm 1 Stabilizing closed-loop system with the WCN

1. Find feasible points X0,Y0,W0, H0, G0 that satisfy

the constraints (6)-(8). If a feasible point does not exist,

then it is not possible to stabilize the system with this

network topology.

2. At iteration k (k ≥ 0), from Xk,Yk obtain the

matrices Xk+1,Yk+1,Wk+1,Hk+1,Gk+1 by solving

the following LMI problem

min tr(YkXk+1 +XkYk+1)[
Xk+1 ÂT

k+1

Âk+1 Yk+1

]
� 0,

[
Xk+1 I

I Yk+1

]
� 0,

Âk+1 =

[
A BGk+1

Hk+1C Wk+1

]
,

(Wk+1,Hk+1,Gk+1) ∈ Ψ, Xk+1,Yk+1 ∈ S
n+N
++ .

3. If the matrix

Âk+1 =

[
A BGk+1

Hk+1C Wk+1

]
is Schur, stop the algorithm. Otherwise, set k = k+1 and

go to the step 2.

In [16] the authors showed that the sequence tk =
tr(YkXk+1 + XkYk+1) always converges. In addition, if

it converges to 2(n + N) the condition Y = X−1 can be

satisfied under the given LMI constraints. A similar proof can

be constructed in this case, leading to the following theorem.

Theorem 2: Algorithm 1 determines a tuple

(W,H,G) ∈ Ψ that causes the matrix Â(W,H,G)
to be Schur if the sequence tk converges to 2(n+N).

While each iteration of the above algorithm is a convex

optimization problem (which can be efficiently solved using

standard LMI toolboxes), we do not have a characterization

of the number of iterations required for the algorithm to

converge.

IV. STABILIZATION DESPITE UNRELIABLE

COMMUNICATION LINKS

In this section we focus on more “realistic” system models,

where potential message drops are taken into consideration.

In this case the system’s evolution can be described as

x̂[k + 1] =
[

A BGθ(k)

Hθ(k)C Wθ(k)

]
x̂[k], where x̂[k] ∈ R

n+N is

the overall system’s state and the subscript θ(k) describes

time-variations in the matrices (W,H,G) caused by (prob-

abilistic) drops of communication packets. The focus of this

section is a design procedure that can guarantee mean-square

stability (MSS) of the closed loop system, defined as:

Definition 1: ([17]) The system is mean-square stable if

for any initial state x̂[0], limk→∞ E
[
‖x̂[k]‖2

]
= 0, where

�� ���
������� ���

��� ����
�� ������

��������

���
�������
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Fig. 2. Remote control over fading channel; (a) A link between nodes vi
and vj ; (b) Link transformation into a robust control form.

the expectation is with respect to the probability distribution

of the packet drop sequence θ(k).
There are relatively few results that explicitly consider

packet drops in networked control systems with general

topologies. The paper [5] considered the problem of the

optimal location for a controller in a network, and the papers

[6], [18] considered the issue of allowing intermediate nodes

to encode information that they are routing to the controller.

All of these papers assume a single sensor and actuation

point on the plant, consider the existence of a designated

controller within the network, and focus on the issue of

transmitting the sensor measurements (or some function of

them) to that controller.

The topic of modeling networks with unreliable channels

was also considered in [17], where it was shown that such

networks can be cast in a robust control framework. In the

framework of [17], a communication link is modeled over

time as a memoryless, discrete, independent and identically

distributed (IID) random process ξ,7 which maps each trans-

mitted value tx[k] into a received value rx[k] = ξ[k]tx[k].
8

For arbitrary nodes vi and vj consider a communication

link (vi, vj) ∈ E with weight wji (as shown in Fig. 2(a)).

In the rest of the paper we will also denote this link as

t = Ω(vi, vj) and its weight as wt, ht or gt. In addition, all

variables related to the link will be denoted with index t (e.g.

ξt[k], instead of ξji[k]). The contribution of the node vi to

the linear combination calculated by node vj at time k can be

represented as wtξt[k]zi[k] where ξt has mean μt = E [ξt[k]]
and a finite variance σ2

t = E
[
(ξt[k]− μt)

2
]
.

Following the approach in [17], we consider the link trans-

formation shown in Fig. 2(b). By writing ξt[k] = μt+Δt[k],
where Δt[k] is a zero-mean random variable with variance

σ2
t , the original unreliable link is modeled as a combination

of the deterministic link (without message drops) with gain

μt and the random link described with gain Δt[k]. Let rt[k]
denote the signal that is injected into the tth link, scaled by

the weight on that link:

rt[k] =

⎧⎨
⎩

htyi[k] if t = Ω(si, vj),
wtzi[k] if t = Ω(vi, vj),
gtzi[k] if t = Ω(vi, aj).

Stacking all of the rt[k]’s in a vector r[k] of length Nl, we

can write

r[k] = Jor

[
y[k]
z[k]

]
= Jor

[
C 0

0 IN

]
︸ ︷︷ ︸

Ĵor

x̂[k], (9)

7Here IID implies that the random variables {ξ[k]}k≥0 are IID.
8Note that a Bernoulli packet drop channel can be modeled by setting

ξ[k] = 0 with probability p and 1 with probability 1− p.
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where each row of the matrix Jor ∈ R
Nl×(N+p) contains a

single nonzero element, equal to a gain wt, ht or gt.
Based on the link transformation shown in Fig. 2(b), and

using (2), the update equation for each node vj is

zj [k + 1] = wjjzj [k] +
∑

t=Ω(vi,vj)

μtwtzi[k] +
∑

t=Ω(si,vj)

μthtyi[k]

+
∑

t=Ω(vi,vj)

Δt[k]rt[k] +
∑

t=Ω(si,vj)

Δt[k]rt[k].

Also, from (3), the input value applied by each actuator at

time step k is

uj [k] =
∑

t=Ω(vi,aj)

μtgtzi[k] +
∑

t=Ω(vi,aj)

Δt[k]rt[k].

Let Δ[k] = diag({Δt[k]}
Nl

t=1), so that the above expres-

sions can be written in vector form as

z[k + 1] = Wμz[k] +Hμy[k] + Jdst
v Δ[k]r[k],

u[k] = Gμz[k] + Jdst
u Δ[k]r[k],

where each nonzero entry of matrices Wμ,Hμ and Gμ

(except the diagonal entries of Wμ) is of the form μtwt, μtht

and μtgt, respectively. Each entry in the matrices Jdst
v and

Jdst
u is either 0 or 1. Specifically, each row of those matrices

simply selects which elements of the vector Δ[k]r[k] are

added to the linear combinations calculated by the actuators

and the wireless nodes. From this, the overall system (with

potential message drops) can be represented as:

x̂[k + 1] =

[
A BGμ

HμC Wμ

]
︸ ︷︷ ︸

Âμ

x̂[k] +

[
B 0

0 IN

]
J
dst

︸ ︷︷ ︸
Ĵdst

Δ[k]r[k],

(10)

with Jdst =

[
Jdst
u

Jdst
v

]
∈ R

(m+N)×Nl and r[k] given by (9).

As previously mentioned, an assumption is made that

Δt[1],Δt[2], . . .Δt[k], . . . are independent zero-mean ran-

dom variables with variance σ2
t . In addition, we assume that

all random variables, Δ1, . . . ,ΔNl
are independent. With

this assumption, using the approach from [17], we obtain

the following result (for a detailed proof see [7]):

Theorem 3: The system from Eq. (10) is MSS if and

only if there exists a positive-definite matrix X and scalars

α1, . . . , αNl
satisfying the LMIs

X � ÂμXÂT
μ + Ĵdstdiag{α}(Ĵdst)T

αi ≥ σ2
i (Ĵ

or)iX(Ĵor)Ti , ∀i ∈ {1, . . . , Nl}
(11)

where (Ĵor)i denotes the ith row of the matrix Ĵor.

As in Section III, Algorithm 2 can be constructed to solve

the inequalities presented in the above theorem (since the

matrix Jdst and σi’s are constants).

Theorem 4: Algorithm 2 will determine the tuple

(W,G,H) ∈ Ψ that guarantees MSS of the system under

the given links’ failure distribution if the sequence tk =
tr(YkXk+1 +XkYk+1) converges to 2(n+N).

Remark 1: If we consider all links to have the same σi =
σ, the largest value of packet loss for which the system is

MSS can be found by allowing σ ∈ R to be a variable. This

causes the last matrix inequality in step 2 of Algorithm 2

to be a bilinear constraint, but this can be handled by using

bisection on the parameter σ ∈ R (e.g., as done in [13]).

Algorithm 2 Stabilizing the closed-loop system with unre-

liable communication links using the WCN

1. Find feasible points X0,Y0,W0, H0, G0 that satisfy

the constraints (11), where X0,Y0 ∈ S
n+N
++ and:[

X0 I

I Y0

]
� 0, (W0,H0,G0) ∈ Ψ

If there is no feasible point, it is not possible to obtain

MSS with this network topology and distribution on the

communication links.

2. At iteration k, (k ≥ 0) from Xk,Yk obtain the

matrices Xk+1,Yk+1,Wμ,k+1,Hμ,k+1,Gμ,k+1 and a

vector αk+1 ∈ R
Nl by solving the following LMI problem

min tr(YkXk+1 +XkYk+1)[
Xk+1 − (Ĵdst)diag{αk+1}(Ĵ

dst)T Âμ,k+1

ÂT
μ,k+1 Yk+1

]
� 0,[

Xk+1 I

I Yk+1

]
� 0,

Âμ,k+1 =

[
A BGμ,k+1

Hμ,k+1C Wμ,k+1

]
,[

αi,k+1 σi(Ĵ
or
k+1)i

σi(Ĵ
or
k+1)

T
i Yk+1

]
� 0, 1 ≤ i ≤ Nl,

(Wμ,k+1,Hμ,k+1,Gμ,k+1) ∈ Ψ, Xk+1,Yk+1 ∈ S
n+N
++

3. Stop the algorithm if the following conditions are true

Xk+1 � Âμ,k+1Xk+1Â
T
μ,k+1 + Ĵdstdiag{αk+1}(Ĵ

dst)T

αi,k+1 ≥ σ2
i (J

or
k+1)iXk+1(J

or
k+1)

T
i , 1 ≤ i ≤ Nl.

Otherwise, set k = k + 1 and go to step 2.

V. DISCUSSION AND EXAMPLE

At first glance, the control scheme that we have presented

in this paper might seem to introduce some delay into the

feedback loop (since the sensor nodes and actuator nodes

might be separated by multiple intermediate nodes, each

taking one time-step to propagate information), which might

limit the class of plants that can be stabilized with this

method. However, the relationship between the WCN and

the traditional notions of delay introduced by the feedback

loop is not as obvious as it might appear at first glance.

Specifically, note that we allow each node in the network to

maintain a value that is a function of its previous value and

the values of all its neighbors, rather than simply routing

values to a controller. This simple modification causes the

network to essentially act as a linear dynamical system

with sparsity constraints in the system matrices; in other

words, this control scheme should be viewed as a dynamic

compensator, rather than a static feedback gain at the end of

a chain of delay elements. The following example shows that

this fact allows our scheme to stabilize plants that cannot be

stabilized with delayed static feedback.

Consider the single-state plant shown in Fig. 3 (with α >

7580



���
��

�����	
����	����	�
���	
���	

��

���	���	

���


 �

Fig. 3. An example of a WCN.

1), which is to be controlled by a network with two nodes

v1 and v2. Node v1 receives the plant output y[k] = x[k]
at each time-step k, and the input to the plant is taken to

be a scaled version of the transmission of the node v2 (i.e.,

u[k] = gz2[k], for some scalar g). If the nodes apply the

linear strategy that we study in this paper, the closed loop

system evolves according to⎡
⎣ x[k + 1]
z1[k + 1]
z2[k + 1]

⎤
⎦ =

⎡
⎣α 0 g
h w11 w12

0 w21 w22

⎤
⎦
⎡
⎣ x[k]
z1[k]
z2[k]

⎤
⎦ , (12)

for some scalars w11, w12, w21, w22, g and h. One can verify

that these scalars can be chosen so that the closed loop

system is stable, regardless of the value of α. For example,

if one chooses the values g = h = 1, w11 = 0, w12 = 1
α

,

w21 = −α3 and w22 = −α, the closed-loop system will

have all poles at zero.

Now, consider a control scheme where node v1 simply

forwards the state measurement to v2 at each time-step,

and v2 sends this value to the actuator where the input

u[k] = gz2[k] is applied. This can be modeled by setting

w11 = w12 = w22 = 0, w21 = 1, and h = 1 in (12). The

characteristic polynomial of this system is z2(z−α)−g, and

one can show (e.g., using the root locus) that it is possible

to find a g such that this polynomial has all roots inside the

unit circle if and only if |α| < 3
2 . In other words, the delay

introduced by this routing scheme limits the class of plants

that can be stabilized. One obtains stability for arbitrary

values of α only by allowing both v1 and v2 to update their

values with a linear strategy (as demonstrated above).

To illustrate the application of our design procedure9

from the previous sections, suppose that each link in the

network is modeled as an independent Bernoulli process with

probability of losing a packet equal to p (the variance of each

process is σ2 = p(1 − p)). Obviously, for α > 1 the plant

is unstable, even for reliable communication links (p = 0).

For α = 2 and p = 0.5% Algorithm 2 converges after 51

iterations10 to the stable configuration

W =

[
0.228 0.965
−2.872 −1.660

]
,H =

[
1
0

]
,G =

[
0 1.837

]
.

Using the bisection method described in the Remark 1,

we computed that the maximal probability of message drops,

pmax, for which there exists a tuple (W,H,G) ∈ Ψ that

guarantees MSS is pmax = 0.69%. In addition, networks

with N = 3 and N = 4 nodes were considered, where

9More complex examples with larger plants and networks (e.g. a plant
with 30 states controlled by a mesh network with 16 nodes) along with
examples where nodes maintain vector states can be found in [7].

10The number of iterations needed before the algorithm converges to a
stable configuration depends on initial points X0,Y0.

the graph G = {V, E} is complete (V = {v1, . . . , vN}). In

these cases maximal probabilities are pmax = 0.74% and

pmax = 0.77% respectively. As can be seen, adding more

nodes in the network increases the robustness of the system

to packet drops in the wireless network.
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