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Abstract— In robot deployment problems, the funda-
mental issue is to optimize a steady state performance
measure that depends on the spatial configuration of
a group of robots. For such problems, a classical way
of designing high-level feedback motion planners is to
implement a gradient descent scheme on a suitably chosen
objective function. This can lead to computationally ex-
pensive algorithms that may not be adaptive to uncertain
dynamic environments. We address these challenges by
showing that algorithms for a variety of deployment
scenarios in uncertain stochastic environments and with
noisy sensor measurements can be designed as stochastic
gradient descent algorithms, and their convergence prop-
erties analyzed via the theory of stochastic approximations.
This approach yields often surprisingly simple algorithms
that can accommodate complicated objective functions,
and work without a detailed model of the environment.
To illustrate the richness of the framework, we discuss
two applications, namely source seeking with realistic
stochastic wireless connectivity constraints, and coverage
with heterogeneous sensors.

I. INTRODUCTION

There has been in the last few years significant

research efforts dedicated to the deployment of mobile

robotic networks. These systems can be used in a vari-

ety of surveillance, monitoring and search applications

as reconfigurable sensor networks, concentrating their

information gathering activities where it is most critical

[1]–[3]. In this paper, we define deployment algorithms

as algorithms that aim at reaching a desired steady-

state configuration for a robot or group of robots rather

than optimizing a trajectory-dependent performance ob-

jective. The algorithms considered here follow the same

idea as the classical potential function methods for feed-

back motion planning [4], but are typically implemented

at the higher levels of a robot motion planner, where

we assume that the robot dynamics can be neglected.

The principle underlying these algorithms is to express

the goal configuration for the robots as the minimum

of a suitably chosen objective function, and to interpret

a gradient descent on that function as a motion plan

from the initial to the goal configuration. An additional
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benefit of such gradient descent algorithms is that they

can in fact adapt the configuration to slow or infrequent

changes in the environment.

We note that a significant part of the work related to

multi-robot deployment relies on such gradient vector

fields. This includes formation control and flocking

[5]–[9], coverage [2], [10] as well as certain vehicle

routing problems [11], or foraging and source seeking

[1], [12]. Most of this work assumes a deterministic

or at least known model of the environment and ne-

glects various sources of uncertainty that can complicate

implementations and invalidate convergence guarantees.

More recently, there has been some interest in stochastic

deployment scenarios in partially unknown environ-

ments with possibly noisy measurements [1], [13]–[16].

An essential idea of this paper is that most of these

stochastic deployment problems can be discussed from

the unifying point of view of stochastic gradient descent

algorithms, thereby simplifying the convergence proofs

and allowing to easily derive new algorithms for more

complex problems.

The rest of the paper is organized as follows. In sec-

tion II we review deterministic gradient descent methods

using potential fields for static deployment problems.

For illustration purposes, we consider two important

examples of deployment problems, namely deployment

with realistic wireless connectivity constraints, and cov-

erage scenarios, and we point out some limitations of

deterministic gradient descent algorithms. Section III

recalls basic facts about stochastic approximations and

stochastic gradient descent algorithms. Finally, in section

IV we revisit the scenarios of section II and illustrate

how stochastic gradient algorithms can form the basis

of new algorithms for complex deployment problems in

the presence of various sources of uncertainty and in the

absence of a precise environment model. Convergence

proofs are only briefly sketched due to space constraints

and generally follow from classical results on stochastic

approximations [17]–[19].

II. LIMITATIONS OF DETERMINISTIC DEPLOYMENT

ALGORITHMS

In deployment problems we want to drive a mobile

robotic network to a fixed steady-state configuration
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that optimizes some performance criterion. This criterion

does not capture how the robots reach the goal configu-

ration, i.e., transient characteristics such as convergence

speed are only analyzed a posteriori for a given scheme.

Because transient behavior is not accounted for directly

in the performance criterion, numerous strategies can

be used to drive the robots to the final configuration

of interest. A common technique is to use low level

controllers and fast internal feedback loops to present to

the high level motion planner an abstract robot model

which is fully actuated and has no dynamics, see e.g. the

discussions in [4], [10]. Assuming this is feasible, as is

done in this paper, we work with the following model.

We assume that we have m robots with configurations

pk = [p1,k, . . . , pm,k] at time k ∈ Z≥0, evolving in

a shared environment or workspace Q, i.e. pi,k ∈ Q,

for i = 1, . . . ,m. At the high-level planning stage we

assume that we can work with a fully actuated model

pi,k+1 = pi,k + ui,k, i = 1, . . . ,m, k ∈ Z≥0, (1)

where ui is an available control input for robot i. We

have velocity constraints of the form ‖ui,k‖ ≤ ui, for

some ui ∈ R.

Once a model of the form (1) is assumed, we describe

the desired deployment configuration as the minimum of

a suitable objective function f : Qm → R, also called

a potential function, which depends on the configura-

tions pi of the robots. We can then design an iterative

optimization scheme of the gradient descent type to

find an (often locally) optimal final configuration, and

reinterpret it as a motion for the robots. Namely, we

choose the control law

ui,k = −γk
∂f

∂pi
|p=pk

, (2)

for robot i in (1), where ∂/∂pi represents the vector

of derivatives with respect to the components of pi,
and γk is some small, in general time-varying stepsize.

These stepsizes can also be used to enforce the velocity

constraints most of the time, and we simply truncate ui,k

otherwise.

Several issues limit the applicability of such gradi-

ent descent schemes however. As the next examples

illustrate, in many multi-robot deployment problems,

the computation of the gradient in (2) often requires

the knowledge of certain a priori unknown environment

parameters, or can only be done approximately due to

sensor and environment noise, or can be simply too

difficult on small platforms with limited computational

power. We show in section IV that in many cases these

issues can be solved in an elegant way by replacing the

deterministic scheme by stochastic gradient algorithms,

which provably work with the very rough approxima-

tions of control law (2) arising in practice.

A. Deployment Under Wireless Connectivity Constraints

Communication between robots and operator stations

is performed over wireless links and this aspect must

be accounted for in deployment problems. Consider the

following scenario. A robot must approach a target point

q∗ in the environment Q ⊂ R
2, however communication

between the robot and the base at [0, 0]T must be

maintained at all times. For example, all applications

involving Unmanned Aerial Vehicles (UAVs) currently

prohibit the loss of communication with any vehicle.

Suppose that q∗ is outside of the communication range

of the base. Then a string of robots can be deployed

in order to establish an ad-hoc communication network

reaching the target point, see Fig. 1.

Most papers considering such deployment problems

use simplified models of the wireless links, typically

assuming a deterministic and known function predicting

the connectivity at all points of the environment, see

e.g. [20] and the references therein. In fact the Signal-

to-Noise Ratio (SNR) between a transmitter at p1 and

a receiver at p2 in Q depends on path loss, shadowing,

multipath fading, and the receiver noise power [21]. It is

in general a random time-varying quantity, denoted here-

after SNRk(p1, p2) for the period k. Wireless models

usually take the form logSNRk(p1, p2) = h(p1, p2) +
νk, where h is a deterministic quantity capturing path

loss, and νk is a stochastic zero-mean variation due

to shadowing (random effects due to environmental

changes) and possibly multipath fading. In [22] the

authors consider motion planning problems assuming a

realistic communication model but assume an a priori

known SNR map, i.e., h and the distribution of νk are

given. They find that mismatches between the assumed

SNR map and the real one have a significant impact on

the connectivity. In section IV-A we present an approach

that can adapt to an unknown SNR map.

We assume that the random variables νk have a

steady-state distribution as k → ∞, and for simplicity,

we assume that this distribution is independent of p1, p2.

The following simple potential penalizes points p1 and

p2 of Q for which the SNR at time k is less than some

threshold SNRmin

c(p1, p2) =











1
2 (− logSNRk(p1, p2) + log SNRmin)

2

if SNRk(p1, p2) < SNRmin,

0 otherwise.

Now suppose that we look for a simple linear chain

configuration, where each robot relays communications
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between the robot behind and in front of him, and the

last robot m tries to approach the target. Minimizing

the following potential function provides a final config-

uration that balances connectivity constraints with the

requirement that the last robot approaches the target

f(p) = E

[

κ1

m−1
∑

i=0

c(pi, pi+1) + κ2‖pm − q∗‖

]

, (3)

where κ1, κ2 ∈ R+ are some additional tunable param-

eters, and p0 = [0, 0]T is the position of the base. The

expectation operator is with respect to the steady state

distribution of the random variables νk.

If we try to compute the gradient of f , in order

to implement (2), then assuming that expectation and

derivative commute (this is true under weak conditions),

we see that robot i needs to compute terms of the form

E

[

∂
∂pi

c(pi, pi+1)

]

= E

[

(

logSNRk(pi, pi+1)− log SNRmin
)

× 1{SNRk(pi,pi+1)<SNRmin} ×
∂

∂pi
h(pi, pi+1)

]

, (4)

where 1{·} is the indicator function. We also have

a similar expression for E

[

∂
∂pi

c(pi−1, pi)
]

. There are

clearly major obstacles to the computation of this gradi-

ent. Most importantly, the function h and the steady-

state distribution of νk are unknown. Even if they

were known using prior measurements and simplifying

models, the calculation of the resulting expectation at

each period would consume significant computational

resources from the robots. Yet we describe in section

IV-A a simple deployment algorithm optimizing (3)

which only requires that the robots have the ability

to test the channel quality at each period with their

neighbors, and involves no expectation computation and

little coordination between the robots.
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Fig. 1. Snapshots of the deployment of 6 robots with wireless
connectivity constraints between a base station (blue square) and a
target (red cross), following the algorithm of section IV-A. Wireless
connectivity is poor except in the top part of the environment,
preventing the robots to form a straight chain to the target.

B. Coverage and Vehicle Routing

Consider the coverage control problem formulated

by Cortes et al. in [10]. The function to be optimized

here comes from the location optimization and vector

quantization literature

f(p) = E

[

min
i∈{1,...,m}

c(‖pi − z‖)

]

, (5)

where ‖ · ‖ denotes the Euclidean norm, and c : R+ →
R+ is a continuously differentiable nondecreasing func-

tion, and E is the expectation with respect to the

distribution of z, representing the location of a target or

event of interest. This objective aims at deploying robots

close to locations where targets have a high probability

of appearing. The case where c(x) = x2 and the target

distribution has a density φ is considered in [10] in more

details, in which case the gradient takes the form

∂f

∂pi
|p=pk

= pi,k − CVi,k
, where (6)

CVi,k
=

1

MVi,k

∫

Vi,k

zφ(z)dz, MVi,k
=

∫

Vi,k

φ(z)dz,

and Vi,k is the Voronoi cell of robot i at time k, i.e.,

Vi,k =
{

z ∈ Q

∣

∣

∣
‖z − pi,k‖ ≤ ‖z − pj,k‖, ∀j 6= i

}

.

Control law (2) then involves the computation of inte-

grals and Voronoi cells at each step, which can require

significant computational resources.

The following vehicle routing problem is closely

related to the coverage control problem. At each period

k ∈ Z≥0, a target appears randomly in the environment

Q at position Zk, according to the probability density

φ. At the beginning of the period, the m robots occupy

the reference positions p1,k, . . . , pm,k, and the robot

that can reach the target the fastest from its reference

position services it. Robot i travels at speed vi, and

there are no obstacles, hence the time the kth target

spends waiting for service is mini∈{1,...,m}
1
vi
‖pi−Zk‖.

After the target is serviced, the robots can travel to new

reference positions pk+1. Once they have reached these

new positions, a new period begins. It is not hard to see

that this discrete-time problem captures the continuous

time problem of [11], [23] in the limit where the arrival

rate of the targets goes to 0. The goal is to minimize the

steady-state waiting time of the targets

f(p) =

∫

Q

min
i∈{1,...,m}

1

vi
‖pi − z‖φ(z)dz. (7)

Besides the potential computational difficulties in-

volved in the calculation of the gradient of (6) or (7)

however, we want in practice to deploy the robots when
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the density φ is a priori unknown but one can only

observe the successive positions Zk, k ≥ 0 of the targets.

Or we may have an initial estimate of φ which should

be refined over time based on these observations during

deployment. This question was considered recently by

Arsie et al. [14] for the objective (7) and Choi et al.

[15], [16] for (6). In section IV-B we give a simple

stochastic gradient descent algorithm optimizing the

general function (5) for all such scenarios.

A Heterogeneous Coverage Problem: We can in fact

significantly extend the type of coverage problems

amenable to analysis, for example to heterogeneous

coverage problems. Consider a vehicle routing scenario

with two types of robots, mA robots of type A and mB

robots of type B, and three types of targets a, b, ab.
Targets of type a must be serviced by robots of type

A, targets of type B by robots of type b, and targets of

type ab by a robot of type A and a robot of type B.

When a new target appears, it is of type α with some

unknown probability λα, α ∈ {a, b, ab}. The spatial

distribution of targets of type α is φα and is also a

priori unknown. The asymptotic configuration of the

robots must now optimize the following objective, with

p = [pA1 , . . . , p
A
mA

, pB1 , . . . , p
B
mB

]

f(p) = min
p

(

λa

∫

Q

1

vA
min

i=1,...,mA

‖pAi − z‖φa(z)dz (8)

+ λb

∫

Q

1

vB
min

j=1,...,mB

‖pBj − z‖φb(z)dz + λab×

∫

Q

mini=1,...,mA
j=1,...,mB

{

max
{

1
vA

‖pB
i − z‖, 1

vB
‖pB

j − z‖
}}

φab(z)dz

)

.

Note that we consider a target of type ab serviced

when both robots have arrived at its location. Even if all

the distributions were known, computing the gradient of

the objective (8) at each time step can be impractical

on small platforms with limited computational power.

Again a stochastic gradient algorithm optimizing (8) is

quite simple to implement and works with no knowledge

of the probabilities φα and λα, see section IV-B.

III. STOCHASTIC GRADIENT ALGORITHMS

In the previous section we argued that it would be

very useful to extend the gradient descent framework

for multi-robot deployment to situations where we have

only access to an approximate and noisy version of

the gradient (2) of the objective, or where this gradi-

ent cannot even be computed because it depends on

unknown environment parameters. Stochastic gradient

algorithms allow us to incorporate information gathered

online during the deployment.

Assume that we wish to minimize a function F of the

form

f(x) = Ez[c(x, Z)] =

∫

c(x, z)dPz(z), (9)

such as (3) or (5) for example. Here Z is a random vari-

able modeling stochastic sources of uncertainty in the

problem. The expectation cannot be computed directly

if the distribution Pz of Z is unknown. Let us assume

that c is differentiable with respect to x, for Pz-almost

all z, and denote its gradient ∇xc(x, Z) := ∂c(x,z)
∂x

.

Finally, assume that we can observe random variables

Zk, k ≥ 0, iid with distribution Pz . Consider then the

recursive algorithm

xk+1 = xk − γk∇xc(xk, Zk), (10)

which can be rewritten in the form

xk+1 = xk + γk(h(xk) +Dk+1), (11)

with h(xk) = −Ez[∇xc(xk, Zk)|xk] and Dk+1 =
∇xc(xk, Zk) − E[∇xc(xk, Zk)|xk]. Note that for Zk

a random variable, ∇xc(xx, Zk) is a random vector.

Define the increasing family of σ-algebras Fk :=
σ(x0, Di, 1 ≤ i ≤ k) = σ(xi, 0 ≤ i ≤ k;Di, 1 ≤ i ≤
k). Then {Dk}k≥1 is a martingale difference sequence

with respect to Fk, i.e. E[Dk+1|Fk] = 0, ∀k ≥ 0.
Under broad conditions and with an appropriate choice

of stepsizes γk, the ODE method [24] says that asymp-

totically the sequence {xk}k≥0 in (11) almost surely

approaches the trajectories of the ODE

ẋ = h(x). (12)

Classical almost sure convergence results are obtained

under the condition
∞
∑

k=0

γk = +∞,

∞
∑

k=0

γ2
k < +∞,

which holds for γk = 1/(1 + k) for example. In many

engineering applications however, γk are chosen to con-

verge to a small positive constant, which allows tracking

of the equilibria of (12) if the problem parameters

change with time. In this case, one typically obtains

convergence to a neighborhood of an equilibrium of

(12). The selection of proper stepsizes is an important

practical issue that is not emphasized in this paper due to

space constraints. It is discussed at length in references

on stochastic approximation algorithms [18], [25].

Assuming now that it is valid to interchange expec-

tation and derivation in the definition of h, we have

h(x) = −E[∇xc(x, Z)|x] = −∇f(x). In other words,

the simple iterates (10) asymptotically approach the

limit set of the gradient flow ẋ = −∇f(x), which
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are the critical points of f . In general we can in fact

expect convergence to the set of local minima of f .

This device allows us to reach these minima in the

absence of knowledge of Pz , as long as we have access

to realizations of the random variables Zk.

A. Kiefer-Wolfowitz Algorithm

Sometimes we do not even have direct access to a

noisy version of the gradient of the function f : Rd → R

to minimize, but only to noisy measurements of the

function f itself. We must then reconstruct the gradient

estimates, using some form of finite-difference scheme.

Hence suppose that we have access to measurements

of the form f̃(x) = f(x) + ν(x), where ν(x) is a

random noise term with E[ν(x)|x] = 0. Now consider

the algorithm

xi
k+1 = xi

k − γk

(

f̃(xk + δei)− f̃(xk − δei)

2δ

)

(13)

= xi
k + γk

[

−
(

f(xk+δei)−f(xk−δei)
2δ

)

+Di
k+1

]

= xi
k + γk

[

−
∂f

∂xi
(xk) + bik +Di

k+1

]

, i = 1, . . . , d,

where the zero-mean noise term Di
k+1 is defined by

Di
k+1 =

ν(xk + δei)− ν(xk − δei)

2δ
,

and the additional perturbation vector bk is

O(δ‖∇2f(xk)‖), assuming that the function f is

twice differentiable. Then the results of [19, chap.

5] for example imply that the iterates converge to

a neighborhood of some local minimum of f . This

version of the stochastic gradient algorithm using a

noisy finite difference approximation of the gradient is

known as the Kiefer-Wolfowitz procedure [26].

B. Spall’s SPSA Algorithm

An interesting variation on the Kiefer-Wolfowitz

scheme that is useful for our purpose is the Simultaneous

Perturbation Stochastic Approximation (SPSA) of Spall

[25]. In a basic version of this method we generate

random variables ∆k ∈ R
d i.i.d., with ∆k independent

of D1, . . . , Dk+1 and x0, . . . , xk and P (∆i
k = 1) =

P (∆i
k = −1) = 1

2 . Then we replace (13) by

xi
k+1 = xi

k − γk

(

f̃(xk + δ∆n)− f̃(pk)

δ∆i
k

)

, (14)

where f̃(x) = f(x)+ ν(x). Again the iterates generally

converge to a neighborhood of a minimum of f almost

surely [19], [25]. Note that for f : Rd → R, (14) requires

only 2 function evaluations instead of 2d for (13) !

IV. ADAPTIVE DEPLOYMENT ALGORITHMS

We now revisit the examples of section II and discuss

the application of stochastic gradient algorithms in these

scenarios.

A. Wireless Deployment with Random Fading Channels

Consider the deployment problem with wireless con-

nectivity constraints of section II-A. What is required

to implement a stochastic gradient descent algorithm

for deployment is an estimate of the expectation (4).

Two successive robots i and i + 1 in the chain can

test the quality of the channel connecting them at each

period. At period k, they measure the random value

mi,i+1
k := logSNRk(pi,k, pi+1,k). The quantity (4)

also involves the computation of ∂
∂pi

h(pi, pi+1), for

which we construct a finite difference estimate using

the SPSA algorithm. More precisely, at period k, after

the robots obtained the quantity mi,i+1
k , they all take

random steps as follows. For i = 1, . . . ,m, robot i
generates random variables ∆i,k = [∆1

i,k,∆
2
i,k]

T as

in the previous paragraph, and moves to pi,k + δ∆i,k,

with δ sufficiently small. Again, the robots test the

channel quality with their neighbors in the chain, so that

robot i collects the value m̂i,i+1
k := logSNRk(pi,k +

δ∆i,k, pi+1,k + δ∆i+1,k). Now consider the following

Taylor expansion, with pi = [p1i , p
2
i ]

T

h(pi,k + δ∆i,k, pi+1 + δ∆i+1,k)− h(pi,k, pi+1,k)

δ∆1
i,k

≈
∂h

∂p1i
(pi,k, pi+1,k) +

∂h

∂p2i
(pi,k, pi+1,k)

∆2
i,k

∆1
i,k

+

2
∑

j=1

∂h

∂pji+1

(pi,k, pi+1,k)
∆j

i+1,k

∆1
i,k

.

All the terms except the first one have zero mean

hence enter as additional noise terms in the stochastic

approximation. In other words, the quantity (m̂i,i+1
k −

mi,i+1
k )/(δ∆1

i,k) is, up to second order terms, an unbi-

ased estimate of ∂h/∂p1i . We can reason similarly for

the other partial derivatives ∂h/∂p2i required by robot i
to perform its gradient descent. In summary, a stochastic

approximation of the expression (4) is obtained at period

k by

(mi,i+1
k − log SNRmin)





m̂
i,i+1

k
−m

i,i+1

k

δ∆1
i,k

m̂
i,i+1

k
−m

i,i+1

k

δ∆2
i,k



×

1{SNRk(pi,pi+1)<SNRmin}.

This expression, which depends only on quantities that

robot i can obtain by direct interaction with its neighbors
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in the chain, is then used in place of (4) in the gradient

descent. The almost sure convergence to a neighborhood

of a local minimum of f defined by (3) follows directly

from the analysis of the Kiefer-Wolfowitz or SPSA

procedure. A small deployment example was presented

on Fig. 1.

B. Adaptive Coverage and Vehicle Routing

Consider the coverage problems of section II-B,

where the distribution φ of the targets is now unknown.

At each period, a target is present at position Zk ∈ Q,

and we assume that at least the robot closest to the

target can observe it. The successive positions Zk could

also correspond for example to a single target with

Markovian dynamics, as long as a stationary distribution

φ exists. At the end of each period, the robots can

change their reference points in order to optimize the

steady-state objective (5). This problem fits the expecta-

tion minimization framework discussed in section III.

In particular, the stochastic gradient descent laws to

implement are typically much easier to compute than the

corresponding deterministic gradient updates. Indeed,

equation (10) simplifies to

pi,k+1 =











pi,k + γkc
′(‖zk − pi,k‖)

zk−pi,k

‖zk−pi,k‖

if i is closest to zk,

pi,k otherwise.

(15)

Note that no Voronoi cell computation or integration is

required, only a distributed mechanism to find which

robot is the closest to the target (e.g. a simple min-

consensus scheme). Only the closest robot updates its

reference position for the period. We can then specialize

(15) to the standard coverage case with c(x) = x2,

which gives the update pi,k + γk(zk − pi,k) for the

closest robot. This particular adaptive algorithm has

been used extensively in various fields [27]–[29] and its

convergence as a stochastic gradient algorithm analyzed

in [30], [31].

For the vehicle routing objective (7), we obtain the

update pi,k+γk
zk−pi,k

‖zk−pi,k‖
for the closest robot, which is

somewhat different from the quadratic case because the

stepsize does not vanish as the distance to the target

becomes small (a projection of the steps on Q can

prevent the iterates to leave Q). With the corresponding

update law, the robots converge to the so-called median

Voronoi configuration, which is a local minimum of (7)1.

This asymptotic configuration is also obtained by [14],

by a more complicated update law (there a robot should

1a rigorous convergence proof will be presented in the full version
of this paper.
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Fig. 2. Vehicle routing for a system with two types of vehicles, A
(full circles) and B (empty squares). Only the reference points of the
vehicles at the beginning of the periods are shown. Targets requiring
service from type A appear with probability 40% and a distribution
centered at [2; 6]T . Targets of type B appear with probability 20% and
a distribution centered at [6; 2]T . Finally targets of type AB appear
with probability 40% and a distribution centered at [6; 6]T . Note how
vehicles of type A and B tend to pair in order to service the targets
of type AB efficiently (here vA = vB).

compute the median of all the targets it visited in the

past every times it moves).

Heterogeneous Coverage: In addition to simplifying

the convergence proofs, the stochastic gradient point of

view allows us to find simple update laws for more

complex problems. To illustrate this point, consider the

routing problem with heterogeneous vehicles discussed

at the end of subsection II-B. One can verify that the

stochastic gradient update rule takes the following form.

When a target of type a appears, the closest robot of type

A moves toward it by a step γk
zk−pi,k

‖zk−pi,k‖
, and similarly

for a target of type b. If the target is of type ab, the

closest A and B robots first find which of the two is

the farthest from the target. Then only this robot moves

by the step γk
zk−pi,k

‖zk−pi,k‖
. In view of the complicated

expression of the objective function, such a simple rule

based update law is quite appealing. We illustrate its

behavior on Fig. 2.

V. CONCLUSION

We propose a general framework for a range of

robotic network deployment scenarios where informa-

tion about stochastic sources of uncertainty needs to be

collected online to optimize the deployment. This paper

gives an overview of the framework, which is based on

stochastic gradient descent algorithms and the related

theory of stochastic approximations. The algorithms are

very flexible in the type of uncertainties they can handle.

Among their known drawbacks, stochastic gradient

algorithms can be slow compared to their determinis-

tic counterparts, and their behavior is sensitive to the

choice of the stepsizes γk. In practice, one could obtain

a first deployment configuration using a deterministic

deployment algorithm based on prior information about

the environment, followed by the stochastic gradient
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scheme accounting for the updated information collected

by the robots and the environment modeling errors.

The simplicity of the stochastic deployment algorithms

makes them ideal candidates for implementation on

small platforms with limited computational power. There

are also many other deployment problems not discussed

here that can benefit from this approach. For exam-

ple, the convergence proof of various source seeking

schemes, such as the one considered in [1], can be

simplified and shown to hold under general assumptions

on the noise characteristics, by viewing it essentially as

a Kiefer-Wolfowitz procedure. Formation control using

noisy observations and communication links can also

be studied from this point of view: the recent papers

[32]–[34] study the related stochastic consensus problem

using stochastic approximations.
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