
From Structured English to Robot Motion ∗

Hadas Kress-Gazit, Georgios E. Fainekos and George J. Pappas
GRASP Laboratory, University of Pennsylvania

Philadelphia, PA 19104, USA
{hadaskg,fainekos,pappasg}@grasp.upenn.edu

Abstract— Recently, Linear Temporal Logic (LTL) has been
successfully applied to high-level task and motion planning
problems for mobile robots. One of the main attributes of LTL is
its close relationship with fragments of natural language. In this
paper, we take the first steps toward building a natural language
interface for LTL planning methods with mobile robots as the
application domain. For this purpose, we built a structured
English language which maps directly to a fragment of LTL.

I. INTRODUCTION

Successful paradigms for task and motion planning for
robots require the verifiable composition of high level plan-
ning with low level controllers that take into account the
dynamics of the system. Most research up to now has
targeted either high level discrete planning or low level
controller design that handles complicated robot dynamics
(for an overview see [2], [16]). Recent advances [1], [4], [6],
[17] try to bridge the gap between the two distinct approaches
by imposing a level of discretization and taking into account
the dynamics of the robot.

The aforementioned approaches in motion planning can
incorporate at the highest level any discrete planning method-
ology [2], [16]. One such framework, is based on automata
theory where the specification language is the so-called
Linear Temporal Logic (LTL) [3]. In the case of known
and static environments, LTL planning has been successfully
employed for the non-reactive path planning problem of a
single robot [8], [9] or even robotic swarms [12]. For robots
operating in the real world, one would like them to act
according to the state of the environment, as they sense it, in
a reactive way. In our recent work [14], we have shifted to a
framework that solves the planning problem for a fragment
of LTL [21], but now it can handle and react to sensory
information from the environment.

One of the main advantages of using this logic as a spec-
ification language is that LTL has a structural resemblance
to natural language1. Nevertheless LTL is a mathematical
formalism which requires expert knowledge of the subject
if one seeks to tame its full expressive power and avoid
mistakes. This is even more imperative in the case of the
fragment of Linear Temporal Logic that we consider in this
paper. This fragment has an assume-guarantee structure that
makes it difficult for the non-expert user even to understand
a specification, let alone formulate one.

∗This work is partially supported by National Science Foundation EHS
0311123, National Science Foundation ITR 0324977, and Army Research
Office MURI DAAD 19-02-01-0383.

1A. N. Prior - the father of modern temporal logic - actually believed that
tense logic should be related as closely as possible to intuitions embodied
in everyday communications.

Ultimately, the human-robot interaction will be part of the
every day life. Nevertheless, most of the end users, that is the
humans, will not have the required mathematical background
in formal methods in order to communicate with the robots.
In other words, nobody wants to communicate with a robot
using logical symbols - hopefully not even the experts in
Linear Temporal Logic. Therefore, in this paper we advocate
that structured English should act as a mediator between the
logical formalism that the robots accept as input and the
natural language that the humans are accustomed to.

From a more practical point of view, structured English
helps even the robot savvy to understand better and faster
the capabilities of the robot without having an intimate
knowledge of the system. This is the case since structured
English can be tailored to the capabilities of the robotic
system, which eventually restricts the possible sentences in
the language. Moreover, since different notations are used
for the same temporal operators, a structured English frame-
work targeted for robotic applications can offer a uniform
representation of temporal logic formulas. Finally, usage
of a controlled language minimizes the problems that are
introduced in the system due to ambiguities inherent in
natural language [22]. The last point can be of paramount
importance in safety-critical applications.

Related research moves along two distinct directions. First,
in the context of human-robot interaction through natural lan-
guage, there has been research that converts natural language
input to some form of logic (but not temporal) and then maps
the logic statements to basic control primitives for the robot
[15], [18]. The authors in [20] show how human actions
and demonstrations are translated to behavioral primitives.
Note that these approaches lack the mathematical guarantees
that our work provides for the composition of the low level
control primitives for the motion planning problem. The
other direction of research deals with controlled language. In
[11], [13], whose application domain is model checking [3],
the language is mapped to some temporal logic formula. In
[23] it is used to convey user specific spatial representations.
In this work we assume the robot has perfect sensors that
give it the information it needs. In practice one would have
to deal with uncertainties and unknowns. The work in [19]
describes a system in which language as well as sensing can
be used to get a more reliable description of the world.

II. PROBLEM FORMULATION

Our goal is to devise a human-robot interface where the
humans will be able to instruct the robots in a controlled
language environment. The end result of our procedure

should be a set of low level controllers for mobile robots
that generate continuous behaviors satisfying the user speci-
fications. Such specifications can depend on the state of the
environment as sensed by the robot. Furthermore, they can
address both robot motion, i.e. the continuous trajectories,
and robot actions, such as making a sound or flashing a light.
To achieve this, we need to specify the robot’s workspace and
dynamics, assumptions on admissible environments, and the
desired user specification.

Robot workspace and dynamics: We assume that a mobile
robot (or possibly several mobile robots) is operating in
a polygonal workspace P . We partition P using a finite
number of convex polygonal regions P1, . . . , Pn, where
P = ∪n

i=1Pi and Pi ∩ Pj = ∅ if i �= j. We discretize
the position of the robot by creating boolean propositions
Reg = {r1, r2, . . . , rn}. Here, ri is true if and only if
the robot is located in Pi. Since {Pi} is a partition of
P , exactly one ri is true at any time. We also discretize
other actions the robot can perform, such as operating the
video camera or transmitter. We denote these propositions
as Act = {a1, a2 . . . , ak} which are true if the robot is
performing the action and false otherwise. In this paper we
assume that such actions can be turned on and off at any
time, i.e., there is no minimum or maximum duration for the
action. We denote all the propositions that the robot can act
upon by Y = {Reg, Act}.

Admissible environments: The robot interacts with its
environment using sensors, which in this paper are assumed
to be binary. This is a reasonable assumption to make since
decision making in the continuous world always involves
some kind of abstraction. We denote the sensor propositions
by X = {x1, x2, . . . , xm}. An example of such sensor
propositions might be TargetDetected when the sensor
is a vision camera. The user may specify assumptions on
the possible behavior of these propositions, thus making
implicit assumptions on the behavior of the environment.
We guarantee that the robot will behave as desired only if
the environment behaves as expected, i.e., is admissible, as
explained in Section III.

User Specification: The desired behavior of the robot is
given by the user in structured English. It can include motion,
for example “Go to rooms [1, 2, 3] infinitely often”. It can
include an action that the robot must perform, for example
“If you are in room 5, then play music”. It can also depend
on the environment, for example “If you see Mika, go to
room 3 and stay there”.

Problem 1 (From Language to Motion): Given the robot
workspace, initial conditions, and a suitable specification in
structured English, construct (if possible) a controller so that
the robot’s resulting trajectories satisfy the user specification
in any admissible environment.

III. APPROACH

In this section we give an overview of our approach to
creating the desired controller for the robot. Figure 1 shows
the three main steps. First, the user specification, together
with the environment assumptions and robot workspace and
dynamics, are translated into a temporal logic formula ϕ.

Temporal Logic Formula

Synthesis Algorithm

Hybrid Controller

ϕ

User

Automaton A

Continuous Trajectories and Actions

Satisfying the User Specification

Environment Robot
SpecificationAssumptions Workspace

Fig. 1: Overview of the approach

Next, an automaton A that implements ϕ is synthesized.
Finally, a hybrid controller based on the the automaton A
is created.

The first step, the translation, is the main focus of this
paper. In Section IV, we give a detailed description of the
logic that we use and in Section VI we show how some
behaviors can be automatically translated. For now, let us
assume we have constructed the temporal logic formula ϕ
and that its atomic propositions are the sensor propositions
X and the robot’s propositions Y . The other two steps, i.e.
the synthesis of the automaton and creation of the controller,
are addressed in [14]. Here, we give a high level description
of the process through an illustrative example.

Hide and Seek: Our robot is moving in the workspace
depicted in Figure 3. It can detect people (through a camera)
and it can “beep” (using it’s speaker). We want the robot to
play “Hide and Seek” with Mika, so we want the robot to
search for Mika in rooms 1, 2 and 3. If it sees her, we want it
to stay where she is and start beeping. If she disappears, we
want the robot to stop beeping and look for her again. We
do not assume Mika is willing to play as well. Therefore, if
she is not around, we expect the robot to keep looking until
we shut it off.

This specification is encoded in a logic formula ϕ that
includes the sensor proposition X = {Mika} and the robot’s
propositions Y = {r1, . . . , r4, Beep}. The synthesis algo-
rithm outputs an automaton A that implements the desired
behavior, if this behavior can be achieved. The automaton
can be non-deterministic, and is not necessarily unique, i.e.
there could be a different automaton that satisfies ϕ as well.
The automaton for the Hide and Seek example is shown in
Figure 2. The circles represent the automaton states and the
propositions that are written inside each circle are the robot
propositions that are true in that state. The edges are labelled
with the sensor propositions that enable that transition, that is
a transition labelled with “Mika” can be taken only if Mika
is seen. A run of this automaton can start, for example, at
the top most state. In this state the robot proposition r1 is
true indicating that the robot is in room 1. From there, if the
sensor proposition Mika is true a transition is taken to the

 r1

 r4

 r1 Beep

Mika

 r2

 r4

 r1

 r4

 r3

Mika

 r3 Beep

Mika

 r3

Mika

 r2 Beep

Mika

 r2

Mika

Fig. 2: Automaton for the Hide and Seek example

1

2

34

(a) The robot found Mika in 2

1

2

34

(b) Mika disappeared from 2 and
the robot found her again in 3

Fig. 3: Simulation for the Hide and Seek example

state that has both r1 and Beep true meaning that the robot
is in room 1 and is beeping, otherwise, a transition is made
to the state in which r4 is true indicating the robot is now
in room 4 and so on.

The hybrid controller used to drive the robot and control its
actions continuously executes the discrete automaton. When
the automaton transitions from a state in which ri is true to
a state in which rj is true, the hybrid controller envokes a
simple continuous controller that is gueranteed to drive the
robot from Pi to Pj without going through any other cell [1],
[6], [17]. Based on the current automaton state, the hybrid
controller also activates actions whose propositions are true
in that state and deactivates all other robot actions.

Returning to our example, Figure 3 shows a sample
simulation. Here Mika is first found in room 2, therefore
the robot is beeping (indicated by the lighter colored stars)
and staying in that room (Figure 3.a). Then, Mika disappears
so the robot stops beeping (indicated by the dark dots) and
looks for her again. It finds her in room 3 where it resumes
the beeping (Figure 3.b).

IV. TEMPORAL LOGIC

We use a fragment of Linear Temporal Logic (LTL) [3]
to formally describe the assumptions on the environment,
the dynamics of the robot and the desired behavior of the
robot, as specified by the user. We first give the syntax and
semantics of the full LTL. Then, following [21], we describe
the specific structure of the LTL formulas that will be used
in this paper.

A. LTL Syntax and Semantics

Syntax: Let AP be a set of atomic propositions. In our
setting AP = X ∪ Y , including both sensor and robot
propositions. LTL formulas are constructed from atomic
propositions π ∈ AP according to the following grammar

ϕ ::= π | ¬ϕ | ϕ ∨ ϕ | © ϕ | �ϕ

where © is the next time operator and � is the eventually
operator. As usual, the boolean constants True and False
are defined as True = ϕ ∨ ¬ϕ and False = ¬True
respectively. Given negation (¬) and disjunction (∨), we can
define conjunction (∧), implication (⇒), and equivalence
(⇔). Furthermore, we can also derive the always operator
as �ϕ = ¬�¬ϕ.

Semantics: The semantics of an LTL formula ϕ is defined
on an infinite sequence σ of truth assignments to the atomic
propositions π ∈ AP . For a formal definition of the seman-
tics we refer the reader to [3]. Informally, the formula ©ϕ
expresses that ϕ is true in the next “step” (the next position
in the sequence). The sequence σ satisfies formula �ϕ if ϕ
is true in every position of the sequence, and satisfies the
formula �ϕ if ϕ is true at some position of the sequence.
Sequence σ satisfies the formula ��ϕ if ϕ is true infinitely
often.

B. Special class of LTL formulas

Following [21], we consider a special class of temporal
logic formulas. These LTL formulas are of the form ϕ =
ϕe ⇒ ϕs. The formula ϕe acts as an assumption about the
sensor propositions and, thus, as an assumption about the
environment, and ϕs represents the desired robot behavior.
The formula ϕ is true if ϕs is true, i.e., the desired robot
behavior is satisfied, or ϕe is false, i.e., the environment
did not behave as expected. This means that when the
environment does not satisfy ϕe and is thus not admissible,
there is no guarantee about the behavior of the robot. Both
ϕe and ϕs have the following structure

ϕe = ϕe
i ∧ ϕe

t ∧ ϕe
g ; ϕs = ϕs

i ∧ ϕs
t ∧ ϕs

g

ϕe
i and ϕs

i describe the initial condition of the environ-
ment and the robot. ϕe

t represents the assumptions on the
environement by constraining the next possible sensor values
based on the current sensor and robot values. ϕs

t constrains
the moves the robot can make and ϕe

g and ϕs
g represent the

assumed goals of the environment and the desired goals of
the robot, respectively. For a detailed description of these
formulas the reader is referred to [14].

Despite the structural restrictions of this class of LTL
formulas, there does not seem to be a significant loss in
expressivity as most specifications encountered in practice
can be either directly expressed or translated to this format.
Furthermore, the structure of the formulas very naturally
reflects the structure of most sensor-based robotic tasks.

V. ENVIRONMENT AND MOTION CONSTRAINTS

As mentioned before, we can view the LTL formulas as
encoding three components. First, ϕe represents the assump-
tions we make on the behavior of the environment, as sensed

by the robot. Second, ϕs
i and ϕs

t describe the robot’s initial
condition and dynamics. Finally, ϕs

g represents the desired
behavior of the robot. Note that in some cases, the desired
behavior is also encoded in ϕs

t as discussed in Section VI.

A. Environment Assumptions

In this paper we allow the user to choose between two
types of environments. The first, which is the most general
case, is when we have no assumptions on the behavior of the
environment, just initial conditions of the sensors. The user
input in this case is “Environment with initial conditions”
E“.” where E is the set of all sensors that are initially true.
In this case

ϕe
General = ∧x∈Ex ∧x �∈E ¬x ∧ �True ∧ ��True

The second is the case in which the robot behavior does
not depend on it’s environment, for example “go to room
4” (no sensing specified). The user input in this case is
“Any Environment.”. Here a dummy sensor proposition must
be defined for the completeness of this special class of
LTL formulas. We arbitrarily choose it to be always false.
Therefore, we have

ϕe
NoSensors = ¬Dummy ∧ �¬Dummy ∧ ��True

The logic formulation allows much richer environment as-
sumptions. Creating a language interface for them is a topic
for future work.

B. Motion Constraints

The position of the robot is represented by the propositions
ri ∈ Y . The robot can only move, at each discrete step, from
one cell to an adjacent cell and it can not be in two cells at the
same time (mutual exclusion). We can automatically translate
these constraints from a description of the workspace into a
logic formula. A transition is encoded as

ϕs
tTransition(i)

= �(ri ⇒ (©ri ∨r∈N ©r))

where N is the set of all the regions that are adja-
cent to ri. All transitions are encoded as ϕs

tTransitions
=

∧i=1,...,n ϕs
tTransition(i)

. The mutual exclusion is encoded as

ϕs
tMutualExclusion

= �(∨1≤i≤n (ri ∧1≤j≤n,i�=j ¬rj))

Constraints on the other actions of the robots, if such exist,
should be encoded into ϕs

t as well. In this paper we assume
there are no such constraints.

VI. DESIRED BEHAVIOR

Our goal in this section is to design a controlled language
for the motion and task planning problems for a mobile robot.
Similar to [10], [13], we first give a simple grammar (Table
I) that produces the sentences in our controlled language and
then we give the semantics of some of the sentences in the
language with respect to the LTL formulas. We distinguish
between two forms of behaviors, Safety and Liveness. Safety
includes all behaviors that the robot must always satisfy, such
as “Always avoid corridor 2” or “If Mika is found, then stay
there”. These behaviors are encoded in ϕs

t and are of the
form �(formula). The other behavior, liveness, includes

things the robot should always eventually satisfy, such as
“Go to room 4 infinitely often” or “Go to room 1 infinitely
often unless Mika is seen”. These behaviors are encoded in
ϕs

g and are of the form ��(formula).
Some of the rules of the grammar for our controlled

language L appear in Table I. Note that L is actually an
infinite language. The literal terminals are marked using
quotation marks “...”, the non-literal terminals are denoted by
bold face (capital letters denote lists of symbols while small
letters just one symbol) and non-terminals by italics. In some
cases, we allow for synonyms in the literal terminals. For
example, “go to” can be replaced by “visit” or “reach”, while
“detected” by “found” or “seen”. The terminal R ranges over
subsets of Reg, i.e., over sets of regions of interest. For
example R can be replaced by {room 1, corridor 2}. C ranges
over sets of active actions at the initial state. The terminal
s ranges over the predicates for the sensors, for example
“Mika”, “fire”, “person” and so on, while the terminals a1,
a2, . . . range over predicates for the actions, for example
“beep”, “picture”, “medic”, “fireman” and so on. A point
that we should make is that the grammar is designed so as
the user can write specifications for only one robot. Any
inter-robot interaction comes into play through the sensor
propisitions. For example we can add a sensor proposition
“Robot2in4”, which is true whenever the other robot is in
room 4, and then refer to that proposition: “If Robot2in4,
then go to room 1”.

We now show how several simple commands are translated
automatically to an LTL formula ϕ.

Initial Conditions: The initial condition of the robot is
given by the user by specifying the initial region that the
robot is in and all other output propositions that are initially
True. Let Rr = Reg − {r}, then the sentence “You start in
r with initial conditions C” is translated to

ϕs
i = r ∧r̄∈Rr ¬r̄ ∧a∈C a ∧a∈Act\C ¬a

Motion Rules: The requirement “go to r infinitely often”
is mapped to the temporal formula:

ϕs
gGoTo(r)

= ��r

This formula makes sure the robot visits room r infinitely
often. We can request the robot to visit multiple rooms, such
as “go to R′ infinitely often” for R′ ⊆ Reg, by taking
conjunctions of “go to” specifications. Note that such a
conjunction does not specify in which order the rooms must
be visited. It only requests that all rooms be visited infinitely
often.

The “go to” specification does not make the robot stay
in room r, once it arrived there. If we want to specify “go
to room r and always stay there”2, we must add a safety
behavior that requires the robot to stay in room r once it
arrives there. The specification is translated to

ϕs
tgGoStay(r)

= ��r ∧ �(r ⇒ ©r)

2Note that the simple grammar in Table I allows for “go to r infinitely
often and go to q and always stay there”. This is an infeasible specification,
and the synthesis algorithm will inform the user that it is unrealizable.

Start ::= “You start in” r “with initial conditions” C “.” (Conditional | Motion “.” | Motion “.” Conditional)
Conditional ::= Conditional Conditional | “If” Condition “, then” (Motion+ | Action) “.” |

| (Motion+ | Action) “unless” Condition “.” | (Motion+ | Action) “iff” Condition
Condition ::= Condition “and” Condition | Condition “or” Condition | “you are in” R |

| “you are not in” R | “You detect” s | s “is detected” | . . .
Action ::= Action “and” Action | Action+

Action+ ::= Action− | “do not” Action−
Action− ::= a1 | “take” a2 | “call” a3 | . . .
Motion ::= Motion “and” Motion | Motion− | “go to” r “and always stay there”

Motion+ ::= Motion− | “stay there”
Motion− ::= “go to” R “infinitely often” | “always avoid” R | . . .

TABLE I: The basic grammar rules for the motion planning problem.

This formula states that if the robot is in room r, in the next
step it must be in room r as well. We define both Motion
and Motion+ to allow sentences of the form “If you sense
Mika, then stay there” while prohibiting combinations such
as “always avoid r and stay there”.

Another motion primitive is avoidance. Since avoidance
is a safety behavior, it is encoded in ϕs

t . The specification
“always avoid r” is translated into

ϕs
tAvoid(r)

= �(¬© r)

meaning, the robot will not be in room r in the next step.
Again, as before, we can tell the robot to avoid several rooms
taking a conjunction of ϕs

tAvoid(r)

Conditional Rules: We can translate “if ... then ...” or “...
unless ...” commands using temporal logic by connecting the
condition and the requirement with the appropriate logical
connective. As an example for a condition, the sentence
“you are in R′”, where R′ ⊆ Reg, translates to the boolean
formula

ϕin(R′) = ∨r∈R′r

The semantics of the conditional rules depend on the rules
used in the consequence. For example, “If condition, then go
to r” converts to

ϕs
gIfGoTo(Condition,r)

= ��(Condition ⇒ r)

While “If condition then avoid r” translates to

ϕs
tIfAvoid(Condition,r)

= �(Condition ⇒ ¬© r)

For lack of space we will not discuss further how such
conditionals are translated to LTL.

Now we turn to the composition of conditionals with
action primitives. Turning on or off other outputs of the robot
will typically be a safety behavior of the form “If on(off)-
condition, then (do not) action”.

ϕs
tDo(a)

= �(OnCondition ⇒ ©a)

ϕs
tDoNot(a)

= �(OffCondition ⇒ ¬© a)

The conditional “... iff ... ” is short for if and only if and is
created by taking the conjunction of “If” Condition “, then”
(Motion+ | Action) “.” and “If” NOT Condition “, then” NOT
(Motion+ | Action) “.”

One final note is that the different sentences in the Start
rule are converted to a temporal formula by taking conjunc-
tions of the respective temporal subformulas. We give several
examples in the next section.

1

2
3

4

5

6
7

8

9

10

11

12

13 14

15

16

17

18
19

20

21 22

23
24

Fig. 4: Simulation for the Visit and Beep example

VII. EXAMPLES

In the following, we assume that the workspace of the
robot contains 24 rooms (Figures 4, 5). Given this workspace
we automatically generate ϕs

tTransitions
and ϕs

tMutualExclusion

relating to the motion constraints
No Sensors: Here we assume the robot has no sensor

inputs, therefore we will automatically generate the dummy
proposition and ϕe = ϕe

NoSensors

Visit and Beep: In this example the robot can move
and beep, therefore Y = {r1, . . . , r24, Beep}. The user
specification is: “Any Environment. You start in r1 with
initial conditions ∅. Go to {r1, r3, r5, r7} infinitely often.
Beep iff you are in {r9, r12, r17, r23}.”

The behavior of the above example is first automatically
translated into the formula ϕ:

ϕe = ¬Dummy ∧ �¬Dummy ∧ ��True

ϕs =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r1 ∧i=2,...,24 ¬ri ∧ ¬Beep
∧ϕs

tTransitions
∧ ϕs

tMutualExclusion∧��(r1) ∧ ��(r3) ∧ ��(r5) ∧ ��(r7)
∧�((r9 ∨ r12 ∨ r17 ∨ r23) ⇒ ©Beep)
∧�(¬(r9 ∨ r12 ∨ r17 ∨ r23) ⇒ ¬© Beep)

Then an automaton is synthesized and a hybrid controller is
constructed. Sample simulations are shown in Figure 4. As
before, beeping is indicated by lighter colored stars.

Sensors: Let us assume that the robot has two sensors, a
camera that can detect an injured person and another sensor
that can detect a gas leak, therefore X = {Person, Gas}.

Search and Rescue: Here, other than moving, the robot can
communicate to the base station a request for either a medic
or a fireman. We assume that the base station can track the
robot therefore it does not need to transmit it’s location. We

1

2
3

4

5

6
7

8

9

10

11

12

13 14

15

16

17

18
19

20

21 22

23
24

Fig. 5: Simulation for the Search and Rescue example

define Y = {r1, . . . , r24, Medic, Fireman}. The user speci-
fication is “Environment with initial conditions ∅. You start
in r1 with initial conditions ∅. Go to {r1, . . . , r24} infinitely
often. Call Medic iff Person is found. Call Fireman iff Gas
is detected.”

A sample simulation is shown in Figure 5. Here, a person
was detected in region 10 resulting in a call for a Medic
(light cross). A gas leak was detected in region 24 resulting
in a call for a Fireman (light squares). In region 12, both a
person and a gas leak were detected resulting in a call for
both a Medic and a Fireman (dark circles)

VIII. CONCLUSIONS - FUTURE WORK

In this paper we have described a method for automatically
translating robot behaviors from a user specified description
in structured English to actual robot controllers and trajecto-
ries. Furthermore, this framework allows the user to specify
reactive behaviors that depend on the information the robot
gathers from its environment at run time. We have shown
how several complex robot behaviors can be expressed using
structured English and how these phrases can be translated
into temporal logic. The extension of the results in this paper
to deal with complex dynamics [7] as well as non-holonomic
vehicles [5] follows naturally.

As mentioned in this paper, we have not yet captured
the full expressive power of the special class of LTL for-
mulas. This logic allows the user to specify sequences of
behaviors, different environment assumptions and other robot
constraints. This is a topic of future work.

We also intend to construct a corpus of what people
would typically ask a robot to do and use it to explore if
and how natural language might be translated into the logic
formulation.

IX. ACKNOWLEDGMENTS

We would like to thank David Conner for allowing us
to use his code for the potential field controllers and Nir
Piterman, Amir Pnueli and Yaniv Sa’ar for allowing us to
use their code for the synthesis algorithm.

REFERENCES

[1] C. Belta and L. Habets. Constructing decidable hybrid systems with
velocity bounds. In IEEE Conference on Decision and Control,
Bahamas, 2004.

[2] H. Choset, K. M. Lynch, L. Kavraki, W. Burgard, S. A. Hutchinson,
G. Kantor, and S. Thrun. Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Boston, USA, 2005.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, Cambridge, Massachusetts, 1999.

[4] D. C. Conner, H. Choset, and A. Rizzi. Towards provable navigation
and control of nonholonomically constrained convex-bodied systems.
In Proceedings of the 2006 IEEE International Conference on Robotics
and Automation (ICRA ’06), May 2006.

[5] D. C. Conner, H. Kress-Gazit, H. Choset, A. A. Rizzi, and G. J.
Pappas. Valet parking without a valet. In IEEE/RSJ Int’l. Conf. on
Intelligent Robots and Systems, San Diego, CA, October 2007.

[6] D. C. Conner, A. A. Rizzi, and H. Choset. Composition of Local
Potential Functions for Global Robot Control and Navigation. In
IEEE/RSJ Int’l. Conf. on Intelligent Robots and Systems, pages 3546
– 3551, Las Vegas, NV, October 2003.

[7] G. E. Fainekos, A. Girard, and G. J. Pappas. Hierarchical synthesis
of hybrid controllers from temporal logic specifications. In Hybrid
Systems: Computation and Control, number 4416 in LNCS, page
203216. Springer, 2007.

[8] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas. Hybrid controllers
for path planning: A temporal logic approach. In IEEE Conference
on Decision and Control, pages 4885–4890, Seville, Spain, 2005.

[9] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas. Temporal logic
motion planning for mobile robots. In IEEE International Conference
on Robotics and Automation, pages 2020–2025, Barcelona, Spain,
2005.

[10] S. Flake, W. Müller, and J. Ruf. Structured english for model checking
specification. In GI–Workshop Methoden und Beschreibungssprachen
zur Modellierung und Verifikation von Schaltungen und Systemen in
Frankfurt, Berlin, 2000. VDE Verlag.

[11] A. Holt and E. Klein. A semantically-derived subset of english for
hardware verification. In Proceedings of the 37th annual meeting
of the Association for Computational Linguistics on Computational
Linguistics, pages 451–456, Morristown, NJ, USA, 1999. Association
for Computational Linguistics.

[12] M. Kloetzer and C. Belta. Hierarchical abstractions for robotic
swarms. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 952 – 957, 2006.

[13] S. Konrad and B. H. C. Cheng. Facilitating the construction of
specification pattern-based properties. In Proceedings of the IEEE
International Requirements Engineering Conference, Paris, France,
August 2005.

[14] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Where’s waldo?
sensor based temporal logic motion planning. In IEEE International
Conference on Robotics and Automation, pages 3116–3121, Rome,
Italy, 2007.

[15] S. Lauria, T. Kyriacou, G. Bugmann, J. Bos, and E. Klein. Converting
natural language route instructions into robot-executable procedures.
In Proceedings of the 2002 IEEE International Workshop on Robot and
Human Interactive Communication, pages 223–228, Berlin, 2002.

[16] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[17] S. Lindemann and S. LaValle. Computing smooth feedback plans
over cylindrical algebraic decompositions. In Proceedings of Robotics:
Science and Systems, Cambridge, USA, June 2006.

[18] A. J. Martignoni III and W. D. Smart. Programming robots using
high-level task descriptions. In M. Rosenstein and M. Ghavamzadeh,
editors, Proceedings of the AAAI Workshop on Supervisory Control of
Learning and Adaptive Systems, pages 49–54, June 2004.

[19] N. Mavridis and D. Roy. Grounded situation models for robots: Where
words and percepts meet. In IEEE/RSJ Int’l. Conf. on Intelligent
Robots and Systems, Beijing, China, October 2006.

[20] M. Nicolescu and M. J. Mataric. Learning and interacting in human-
robot domains. IEEE Transactions on Systems, Man, and Cybernetics,
Part B,special issue on Socially Intelligent Agents - The Human in the
Loop, 31(5):419–430, 2001.

[21] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of Reactive(1) Designs.
In VMCAI, pages 364–380, Charleston, SC, Jenuary 2006.

[22] S. Pulman. Controlled language for knowledge representation. In Pro-
ceedings of the 1st International Workshop on Controlled Language
Applications, 1996.

[23] E. A. Topp, H. Hüttenrauch, H. I. Christensen, and K. S. Eklundh.
Bringing together human and robotics environmental representations
/ a pilot study. In Proc. IEEE/RSJ Intl Conf on Intell. Robots and
Systems (IROS-06), Beijing, CH, October 2006.

