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Abstract— In this paper, we propose a path planning method
for nonholonomic multi-vehicle system in presence of moving
obstacles. The objective is to find multiple fixed length paths
for multiple vehicles with the following properties: (i) bounded
curvature (ii) obstacle avoidant (iii) collision free. Our approach
is based on polygonal approximation of a continuous curve.
Using this idea, we formulate an arbitrarily fine relaxation
of the path planning problem as a nonconvex feasibility opti-
mization problem. Then, we propound a nonsmooth dynamical
systems approach to find feasible solutions of this optimization
problem. It is shown that the trajectories of the nonsmooth
dynamical system always converge to some equilibria that
correspond to the set of feasible solutions of the relaxed
problem. The proposed framework can handle more complex
mission scenarios for multi-vehicle systems such as rendezvous
and area coverage.

I. INTRODUCTION

The problem of path planning for a vehicle in a dynam-

ically changing environment has been an active research

area in robotics and control communities [1], [2]. The major

trends have been focused on holonomic and non-holonomic

kinematic path planning problems. Perhaps Dubins’ seminal

work [3] is one of the first ones in this area that characterizes

shortest bounded-curvature paths for a vehicle in absence of

obstacles. It is well-known that finding a shortest bounded-

curvature path amidst polygonal obstacles in the plane is

NP-hard [4]. Also, researchers have shown that the general

feasibility algorithm is exponential in time and space [5].

These results imply that struggling to find an efficient and

exact algorithm to solve curvature-constrained path planning

problem is hopeless. This partially resulted in developing

various approximate methods to solve the path planning

problem [6]- [7]. Nevertheless, the existing algorithms are

incomplete in the sense that they may not provide a solution

even if one exists.

Among different approaches to the path planning problem,

the navigation function method is the closest one to our

methodology [8]. In this method, the vehicles are steered

by some artificially generated forces, defined as the negative

gradient of a navigation function. The navigation function is

defined so that it can generate attractive forces toward the

goal and repulsive forces in the neighborhood of an obstacle.
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The main disadvantage of the navigation function methods

is that they can not handle nonholonomic constraints such as

bounded-curvature constraint.

In this paper, our goal is to propose a near-optimal and

scalable method for solving the bounded-curvature path plan-

ning problem in presence of moving obstacles. We assume

that each obstacle can be represented as union of non-

overlapping disks and their motion trajectories are known.

First, we consider the path planning problem for a single

vehicle. Then we extend our results to handle multi-vehicle

path planning problems. Our approach is based on polygonal

approximation of a continuous curve in the plane. A path

connecting the initial and final positions of a vehicle can be

approximated by finitely many waypoints. This approxima-

tion can be arbitrarily improved by increasing the number

of waypoints. In this setting, we can relax the bounded-

curvature and collision-free constraints by verifying the

constraints only at these waypoints. This relaxation results in

a finite-dimensional formulation of the path planning prob-

lem as a nonconvex feasibility optimization problem. Every

feasible solution to the relaxed problem is an approximate

bounded-curvature and collision-free path for the vehicle.

Furthermore, we propose a nonsmooth dynamical sys-

tems approach to find feasible solutions of the optimization

problem. In this method, each waypoint is treated as a

moving particle in the plane. We define interaction forces

between the particles such that: (i) the set of equilibria of

the system contains all feasible solutions of the optimization

problem, and (ii) the corresponding multi-particle system is

asymptotically stable. In an equilibrium point the net force

on each particle is equal to zero. It is shown that by applying

some specific type of nonsmooth interaction forces, the net

force on each particle is equal to zero if and only if these

particles are representing a feasible path. In other words, for

every initial condition the trajectory of the system always

converges to a feasible path for the vehicle. Since we are

using discontinuous dynamical system, we need nonsmooth

analysis and stability of nonsmooth systems to analyze

the dynamical system with discontinuous right-hand sides.

When studying a discontinuous vector field the classical

notion of solution for dynamical system is too restrictive

and may not even exist. There are several solution notions

for discontinuous systems such as Caratheodory solutions,

Krasovskii solutions and Filipov notion of solutions [13].

In this paper, we employ the notion of Filipov’s solutions.

Filipov in his seminal contribution [10] developed a solution

concept for differential equations whose right-hand sides
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were only required to be Lebesgue measurable in the state

and time variables. For our analysis, we will apply Shevitz

and Paden’s results [14] on nonsmooth Lyapunov stability

theory and LaSalles invariance principle for a class of

nonsmooth Lipschitz continuous Lyapunov functions.

This paper is organized as follows. In Section II, we

formulate the path planning problem for a single vehicle

as a feasibility optimization problem. A dynamical system

approach to the path planning problem is discussed in Section

III. In Section IV, it is shown that by using discontinuous

interaction forces we can always guarantee the convergence

of the trajectories of the system to feasible paths. The single-

vehicle path planning in presence of moving obstacles is

presented in Section V. In Section VI, we show that our

methodology can be directly applied to the multi-vehicle path

planning problem in presence of moving obstacles.

II. PROBLEM FORMULATION

The goal of this paper is to find a fixed-length bounded

curvature trajectory for a vehicle with given initial and final

configurations in a dynamically changing environment. We

assume that the dubins vehicle is traveling with a constant

speed V . Suppose that there are M moving obstacle with

known motion patterns in the environments. At any time

instant t, each obstacle is assumed to be represented by a

disk D(cj(t), rj(t)) = {x | ‖x− cj(t)‖ ≤ rj(t)}. We also

assume that these disks are not overlapping for all time.

Path Planning with Moving Obstacles: Let κmax > 0 be
the maximum allowable curvature and P,Q ∈ R

2 the initial
and final points. Then the problem consists of finding a curve
γ : [0, T ] → R

2 (parameterized by time where T > 0 is a
fixed number) such that

(i) γ(0) = P and γ(T ) = Q.

(ii) κ(t) ≤ κmax for all t ∈ [0, T ].

(iii) γ(t) ∩ D(cj(t), rj(t)) = ∅ holds for all t ∈ [0, T ]
and j = 1, . . . , M .

Note that κ(t) is the curve curvature at time t. One can

see that γ is a fixed length curve of length l = V T . We refer

to the second condition as the obstacle avoidance constraint.

The third condition guarantees a bounded curvature curve.

In the sequel, we will tackle this problem in several steps

and propose an arbitrarily fine approximation of the optimal

solution. In Section II-A, we review polygonal approximation

of a continuous curve with equidistant waypoints in R
2. In

Section II-B and II-C, we show that conditions (ii) and (iii)

can be relaxed by verifying the constraints only at waypoints.

In Section II-D, we will see that the path planning problem

reduces to a feasibility optimization problem.

A. Polygonal Curve Approximation

Our approach is based on discrete approximation of a

continuous curve using finite number of vertices. Consider a

polygonal curve γp = p0p1...pn represented by its ordered

vertices p0, p1, ..., pn ∈ R
2 where p0 = P , pn = Q and

pipi+1 is the line segment connecting pi to pi+1. Under

some mild assumptions, for a given error bound ε > 0, one

can always find points {p0, p1, . . . , pn}, for a large number

n > 0, such that

|L(γp) − l| < ε, (1)

where

L(γp) =
n∑

i=1

‖pi − pi−1‖.

Without loss of generality, we may assume that all points pi

are equidistant. Therefore, it follows that

d = ‖pi − pi−1‖ � l

n
. (2)

for all i = 1, ..., n.

B. Discrete Curvature

If we assume that d 	 1
κmax

, then we can use Ci the

circle passing through the points (pi−1, pi, pi+1) (if not all

of these three points lie on a line), as an approximation to

the osculating circle to the curve at point pi to calculate the

curve curvature at that point. As both pi−1 and pi+1 move

toward pi, circle Ci approaches a limiting circle with radius

ri which is the same as the osculating circle at point pi.

More importantly, 1
ri

is the curvature at pi. Therefore, we

can employ circle Ci to calculate an approximation of the

curvature at point pi. Let A denotes the area of the triangle

formed by nodes (pi−1, pi, pi+1) and dij = ‖pi − pj‖. The

discrete curvature κi at point pi is defined by

κi =
1
Ri

=
4A

d(i−1)idi(i+1)d(i−1)(i+1)
(3)

By applying assumption (2) and the fact that the area of the

triangle is A =
√

s(s − a)(s − b)(s − c) where s = a+b+c
2 ,

we have

κi =
2

√
d2 − d2

(i−1)(i+1)

4

d2
. (4)

By imposing the following constraint on discrete curvature

κi ≤ κmax,

it follows that

‖pi−1 − pi+1‖ = d(i−1)(i+1) ≥ l

n

√
4 − κ2

maxl
2

n2
= η (5)

where i = 1, ..., n − 1.

C. Moving Obstacles

Our goal is to find a path for the Dubins vehicle in

presence of moving obstacles with known motion patterns.

Suppose that ti is the time instant at which the vehicle is

at waypoint pi. Therefore, the obstacle avoidance condition

(iii) can be written as follow

‖pi − cj(ti)‖ ≥ rj(ti) (6)

for all i = 0, . . . , n and j = 1, . . . , M . We assume that

‖P − cj(0)‖ ≥ rj(0) and ‖Q − cj(T )‖ ≥ rj(T )

for all j = 1, . . . , M .
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D. Relaxed Path Planning Problem

A relaxation of the path planning problem can be posed

as the following problem.

Relaxed Path Planning Problem as a Feasibility Prob-
lem: There exists a polygonal curve γp = p0p1...pn that
satisfies conditions (i)-(iii) if and only if the following
optimization problem is feasible

min
{p1,...,pn−1}∈R2

0 (7)

subject to: p0 = P and pn = Q,

‖pi − pi−1‖ = d, i = 1, ..., n

‖pi−1 − pi+1‖ ≥ η, i = 1, ..., n − 1
‖pi − cj(ti)‖ ≥ rj(ti), i = 1, . . . , n − 1

j = 1, . . . , M.

where η is defined in (5). The optimization problem (7) is a

nonconvex problem. In the following section, we we propose

a multi-particle dynamical system approach to solve the

feasibility problem (7). First, we consider the path planning

problem without obstacles.

III. PATH PLANNING USING STABLE MULTI-PARTICLE

SYSTEMS

In this section, we propose a method to find a feasible

solution of problem (7) for a single vehicle in the absence

of obstacles in the environment. Consider the waypoints

p0, ..., pn ∈ R
2. These points can be viewed as point mass

particles moving on the plane with some initial random

positions. Let mi be the mass of particle i with position pi.

A force vector Fi can be associated to point mass particle

pi. Therefore, we have

mip̈i = Fi (8)

where i = 0, ..., n. Let p = [pT
0 , pT

1 , . . . , pT
n ]T denote the

state of the overall system. One can impose the following

constraints

p0 = P and pn = Q

on particles 0 and n by assuming that m0, mn > M for any

large number M > 0. In other words, two heavy masses are

concentrated at points P and Q and that their positions are

fixed.

Our goal is to design force vectors Fi for each particle

such that the set of stable equilibria of the dynamical systems

(8) is equal to the set of all feasible solutions of the

optimization problem (7).

Definition 1: We refer to a real-valued function fij as

elasticity function if it satisfies the following conditions:

(i) fij = fji for all i and j.

(ii) Functions fij are nondecreasing.

(iii) The vector (p0, ..., pn) is a feasible solution of

problem (7) if and only if fij(‖pi − pj‖) = 0 for

all i, j = 0, ..., n.

Throughout the paper, we will also refer to the elasticity

functions as spring-like forces.

Theorem 1: All feasible solutions of problem (7) are

stable equilibria of the multi-particle system (8) with

Fi =
n∑

j=0
j �=i

fij(‖pi − pj‖) eij − υṗi (9)

where fij’s are continuous spring forces, eij = pj−pi

‖pi−pj‖ , and

υ > 0 is a constant.

Proof: We refer to [17] for a proof.

Remark 1: One should note that dynamical system (8)

with continuous vector forces (9) may have some additional

unfavorable equilibria. A simple analysis shows that in

equilibrium the net force on each particle pi can be zero

while some of the force components are not zero (see

Fig. 1). In fact, nonzero spring-like forces in equilibrium

imply infeasibility of the corresponding solution (path). This

verifies the possibility of converging to infeasible solutions

(paths). In Section IV, we will show that by employing

discontinuous forces such (unfavorable) possibilities can be

withdrawn. We will show that all unfavorable equilibria

(corresponding to infeasible paths) are unstable.

Remark 2: Some additional restrictions on the initial and

final orientations of the vehicle can be imposed. This can be

done by fixing the positions of particles p1 and pn−1 addi-

tional to p0 and pn by imposing the constraints m2, mn−1 >
M for some large enough M > 0.

IV. STABILITY ANALYSIS OF MULTI-PARTICLE SYSTEM

WITH DISCONTINUOUS FORCES

In this section, we use discontinuous elasticity functions

and by means of net force analysis in the equilibrium, we

show that an equilibrium is stable if and only if all of the

forces are equal to zero. We should emphasize that forces

are zero if and only if constraints are satisfied. We consider

the following class of discontinuous elasticity functions

f(z) =
{

0 if z ≥ η
−w if z < η

, (10)

where w, η ≥ 0 are constant.

Theorem 2: Consider the multi-particle dynamical system

(8) with

Fi =
n∑

j=0
j �=i

fij(‖pi − pj‖) eij − υṗi (11)

where the elasticity functions fij are either continuous as in

definition 1 or discontinuous as in (10). Then for almost

all initial conditions, the trajectories of the multi-particle

dynamical system (8) asymptotically converge to an equi-

librium. Furthermore, a feasible solution of problem (7) is a

locally asymptotically stable equilibrium of the multi-particle

dynamical system (8) if all the corresponding spring-like

forces are equal to zero.

Proof: We refer to [17] for a proof.
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Fig. 1. Analysis of the net forces in the equilibrium which shows that the
net forces in p3 could be zero even though the forces are not zero.

Theorem 2 shows that for properly chosen continuous elas-

ticity functions the set of all stable equilibria of the multi-

particle dynamical system (8) contains all feasible solutions

of (7). In the following theorem, it is shown that by means

of discontinuous elasticity functions one can actually prove

that all unfavorable equilibria of the multi-particle dynamical

system (8) are unstable. In other words, theorem (3) shows

that for almost all initial conditions (except for those where

the particles lie on a straight line passing through p0 and pn

which constitute a set of measure zero) the trajectories of the

multi-particle dynamical system asymptotically converges to

an equilibrium which is a feasible solution of problem (7). In

the sequel, we consider the following class of discontinuous

elasticity functions

fi(i+1)(z) =

⎧⎪⎨
⎪⎩

w1 if (z − l
n ) ≥ w1

kf

kf (z − l
n ) if − w1

kf
≤ z ≤ w1

kf

− w1 if (z − l
n ) ≤ −w1

kf

(12)

and

f(i−1)(i+1)(z) =
{

0 if z ≥ η
−w2 if z < η

, (13)

where η = l
n

√
4 − κ2

maxl2

n2 and w1, w2, kf > 0 are some

constant numbers.

Theorem 3: Consider the multi-particle dynamical system

described by (8) with 2k particles (i.e., n = 2k − 1) and

discontinuous elasticity functions defined as (12) and (13).

If w2 > 2w1, then all of the infeasible equilibria are either

unstable or saddle with measure zero region of attraction.

Proof: Without loss of generality, we may assume that

‖p0 − pn‖ > l. If ‖p0 − pn‖ < l, then problem (7) is

infeasible. When ‖p0 − pn‖ = l, there is only one stable

equilibrium that corresponds to the case where all particles

lie on a straight line connecting p0 to pn.

In Theorem 2, we showed that the multi-particle dynamical

system is stable. This means that the trajectories of the

multi-particle system converge to stable equilibrium. In an

equilibrium point, the net force on a given particle is equal

to zero. This does not necessarily means that all elasticity

functions acting on that particle are zero. There are two

types of springs vector forces: (i) To enforce particles to

be equidistant: fi(i+1)(‖pi − pi+1‖) ei(i+1), (ii) To satisfy

curvature constraints: f(i−1)(i+1)(‖pi−1−pi+1‖) e(i−1)(i+1).
It is easy to see that

|fi(i+1)| ≤ w1 <
w2

2
, (14)

and

|f(i−1)(i+1)| = 0 or w2. (15)

We can associate a graph to the multi-particle system

with nodes representing the mass particles. There is an edge

between a pair of nodes if there is a nonzero spring force

between the two particles. From Fig. 1, one can see that

each particle pi for i = 2, ..., 2k − 3 is connected to four

other particles (the positions of the particles p0 and p2k−1

are fixed). In an equilibrium point, there are three spring-

like forces with magnitudes f01, f12 and f13 associated with

node p1. Since the net force is zero at this node, we have

f01 e01 + f12 e12 + f13 e13 = 0. (16)

It follows that

‖f01 e01 + f12 e12‖ = |f13|. (17)

Assume that f13 = w2, then from the above equation we get

‖f01 e01 + f12 e12‖ = |f13| = w2. (18)

On the other hand, we have

‖f01 e01 + f12 e12‖ ≤ |f01| + |f12| ≤ 2w1 < w2. (19)

This is a contradiction, because from our assumptions we

know that w2 > 2w1. Therefore, we conclude that f13 =
0. In other words, there are only three spring-like forces

acting on particle p3, i.e., f23, f34 and f35. Using a similar

argument, we can also show that f35 = 0. By repeating the

same procedure on the other nodes, it follows that

f35 = f57 = . . . = f(2k−3)(2k−1) = 0. (20)

Therefore, at nodes with odd indices all spring-like forces

resulting from curvature constraints are zero and that can be

eliminated from the graph. Similarly, we can argue that at

node p2k−2 we have f(2k−2)(2k−4) = 0. By performing a

similar analysis, we can show that

f(2k−2)(2k−4) = f(2k−4)(2k−6) = . . . = f20 = 0. (21)

From (20) and (21), we conclude that all spring-like forces

corresponding to curvature constraints are equal to zero.

Thus, the only possibility in order to have fi(i+1) �= 0 (for

all i = 0, . . . , 2k − 1) in an equilibrium is that all particles

to lie on a straight line passing through p0 to p2k−1. This

formation of particles is clearly saddle because we assumed

that ‖p0 − pn‖ > l and all particles will have expansion

forces acting on them and infinitesimal deviation from the

line push the particles further away from line which makes

the formation unstable.

Remark 3: In the proof of Theorem 3, we assumed that

net force is equal to zero in an equilibrium. In continuous

systems, this is always the case. However, the vector field

could be nonzero in an equilibrium of a nonsmooth dynami-

cal system. We should note that we proved in Theorem 2 that

for almost all initial conditions the trajectory of the multi-

particle dynamical system converges to a stable equilibrium.

Therefore, we only need to show that if the net force is not
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Fig. 2. Graph representation of the forces in the presence of obstacles.

zero in an equilibrium, then the equilibrium is either unstable

or is saddle with measure zero region of attraction. We refer

to [17] for a formal proof and further discussion on this issue.

We should note that a similar result holds for the equilibria of

the the multi-particle dynamical system defined in Theorems

4 and 5.

V. SINGLE-VEHICLE PATH PLANNING IN PRESENCE OF

MOVING OBSTACLES

In this section, our goal is to find a path for Dubins’

vehicle in presence of moving obstacles with known mo-

tion trajectories. We assume that each obstacle j can be

represented by a disk Oj(cj(t), rj(t)) for all j = 1, . . . , M .

Furthermore, we assume that at any time instant these disks

are not overlapping. Suppose that ti is the time instant at

which the vehicle is at waypoint pi. Therefore, the obstacle

avoidance condition can be written as follow:

‖pi − cj(ti)‖ ≥ rj(ti), (22)

for all i = 0, . . . , n and j = 1, . . . , M . Similar to the

static obstacles, in order to enforce obstacle avoidance con-

straints, we define a new spring-like force between obstacle

Oj(cj(t), rj(t)) and particle pi as fij(‖pi−cj(ti)‖)eij with

the following elasticity function

fij(z) =
{

0 if z ≥ rj(ti)
−w3 otherwise

. (23)

Similar to the static obstacle case, the elasticity functions

defined by (23) belong to the class of elasticity functions

defined by (10). Therefore, the stability conditions of The-

orem (2) hold and the trajectories of the multi-particle

dynamical system (8) with new obstacle-avoidance forces

asymptotically converge to equilibrium.

Theorem 4: Consider the multi-particle dynamical system

(8) with 2k particles and M moving obstacles with known

motion trajectories. The obstacles are represented by non-

overlapping disks Oj(cj(t), rj(t)) for j = 1, . . . , M . If the

spring-like forces and obstacle avoidance forces are defined

as (12), (13), and (23) with the following constraints

2w1 < w2,

2(w1 + w2) < w3, (24)

then all stable equilibria of the multi-particle dynamical

system (8) are feasible.

Proof: We only need to show that in an equilibrium all

the particles lie outside the obstacles. Then from Theorem

3 it follows that all stable equilibria are feasible. For this

purpose, we assume that particle pi is inside the obstacle with

center cj(ti). This means that there are five force components

acting on particle pi with zero net force,

f(i−1)ie(i−1)i + fi(i+1)ei(i+1)︸ ︷︷ ︸
spring forces to enforce particles to be equidistant

+ f(i−2)ie(i−2)i + fi(i+2)ei(i+2)︸ ︷︷ ︸
spring forces to impose curvature constraints

− w3eij︸ ︷︷ ︸
obstacle avoidance force

= 0

It follows that

‖f(i−1)ie(i−1)i + fi(i+1)ei(i+1)

+ f(i−2)ie(i−2)i + fi(i+2)ei(i+2)‖ = ‖w3eij‖ = w3.

On the other hand,

‖f(i−1)ie(i−1)i + fi(i+1)ei(i+1)

+f(i−2)ie(i−2)i + fi(i+2)ei(i+2)‖
≤ ‖f(i−1)ie(i−1)i‖ + ‖fi(i+1)ei(i+1)‖ +

‖f(i−2)ie(i−2)i‖ + ‖fi(i+2)ei(i+2)‖
≤ w1 + w1 + w2 + w2 = 2(w1 + w2) < w3

Thus, it follows that w3 < w3 which is a contradiction.

Therefore, in an equilibrium there are no force components

between the particles and the obstacles. Therefore, all the

particles lie outside the obstacles.

VI. MULTI-VEHICLE PATH PLANNING IN PRESENCE OF

MOVING OBSTACLES

The developed framework in previous sections can be

employed to handle multi-vehicle path planning problem in

presence of moving obstacles. We associate a multi-particle

dynamical system (representing a path) with each vehicle.

For example, for N vehicles we need to have N different

multi-particle dynamical systems. In order to guarantee a

collision-free path for each vehicle, we need to introduce a

new force component so called collision-avoidance force.
Consider two vehicles with constant speeds V1 and V2

traveling distances l1 and l2. The corresponding waypoints

for these two vehicles are represented by {p1
0, p

1
1, ..., p

1
n} and

{p2
0, p

2
1, ..., p

2
m}. In order to avoid collision between the two

vehicles, we must guarantee that both vehicles are not going

to arrive at a waypoint simultaneously. In other words, if

there exist waypoints p1
i and p2

j for which∣∣∣∣ l1
nV1

i − l2
mV2

j

∣∣∣∣ ≤ ε (25)

for some time-error ε > 0, then the following constraint has

to be imposed on the corresponding waypoints

‖p1
i − p2

j‖ ≥ ε′ (26)

for some position-error ε′ > 0. Therefore, we can introduce

new elasticity functions for all pairs of points p1
i and p2

j

satisfying condition (25) as follows

fij(z) =
{

0 if z ≥ ε′

−w4 otherwise
(27)
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We emphasize that the interaction force (27) is defined

between waypoints of two different trajectories. According

to Theorem 2, it is straightforward to show that the resulting

multi-particle dynamical systems under collision-avoidance

constraints (forces) are stable. Furthermore, the following

theorem shows that all unfavorable equilibria of the overall

system are unstable.

Theorem 5: Suppose that N is the number of vehicles, M
the number of moving obstacles, and 2ki the number of parti-

cles representing a trajectory for vehicle i for i = 1, . . . , N .

Each obstacle is represented by a disk D(cj(t), rj(t)) for

j = 1, . . . , M . At any given time, assume that no more than

two vehicles can possibly collide. Then all stable equilibria of

the resulting multi-particle dynamical system with elasticity

functions defined by (12), (13), (23) and (27) in which

2w1 < w2

2(w1 + w2) < w3

2(w1 + w2) + w3 < w4

are feasible.

Proof: We only need to prove that in an equilibrium

paths are collision-free. Then according to Theorem 4 one

can conclude that all stable equilibria are feasible. Let as-

sume that vehicles 1 and 2 collide, i.e., there exist waypoints

p1
i and p2

j that satisfy (25) and ‖p1
i −p2

j‖ ≤ ε′. In this case,

there are (at most) six force components acting on particle

p1
i with zero net force (in the following equations for the

sake of simplicity superscript 1 is dropped)

f(i−1)ie(i−1)i + fi(i+1)ei(i+1)︸ ︷︷ ︸
spring forces to enforce particles to be equidistant

+ fi(i+2)ei(i+2) + f(i−2)ie(i−2)i︸ ︷︷ ︸
spring forces to impose curvature constraints

− fikeik︸ ︷︷ ︸
obstacle avoidance force

− w4eij︸ ︷︷ ︸
collision avoidance force

= 0

for some obstacle with index k. It follows that

‖f(i−1)ie(i−1)i + fi(i+1)ei(i+1) + fi(i+2)ei(i+2)

+ f(i−2)ie(i−2)i − fikeik‖ = ‖w4eij‖ = w4

Therefore, we have

‖w4eij‖ ≤ ‖f(i−1)ie(i−1)i‖ + ‖fi(i+1)ei(i+1)‖ +
‖fi(i+2)ei(i+2)‖ + ‖f(i−2)ie(i−2)i‖ + ‖fikeik‖

≤ w1 + w1 + w2 + w2 + w3 = 2(w1 + w2) + w3 < w4

This is a contradiction. Therefore, the collision-avoidance

force fij must be equal to zero. This means that in equilib-

rium all paths are collision free.

VII. CONCLUSION

We formulated an arbitrarily fine relaxation of the path

planning problem for nonholonomic vehicles as a nonconvex

feasibility optimization problem. Then, we proposed a nons-

mooth dynamical systems approach to find feasible solutions

of the nonconvex optimization problem. We showed that

the set of equilibria of the nonsmooth dynamical systems

contains all feasible solutions of the optimization problem

and that the dynamical system is asymptotically stable. This

method can be applied to compute feasible paths for multi

vehicles in presence of moving obstacles.
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