Bisimilar Control Affine Systems!

Paulo Tabuada and George J. Pappas

Department of Electrical and Systems Engineering
University of Pennsylvania
Philadelphia, PA 19104
e-mail: {tabuadap,pappasg}@seas.upenn.edu

Abstract

The notion of bisimulation plays a very important role
in theoretical computer science where it provides sev-
eral notions of equivalence between models of compu-
tation. These equivalences are in turn used to sim-
plify analysis and synthesis for these models. In system
theory, a similar notion is also of interest in order to
develop modular analysis and design tools for purely
continuous or hybrid control systems. In this paper,
we introduce two notions of bisimulation for nonlinear
systems. We present a differential-algebraic characteri-
zation of these notions and show that bisimilar systems
of different dimensions are obtained by factoring out
certain invariant distributions. Furthermore, we also
show that all bisimilar systems of different dimension
are of this form.

1 Introduction

In theoretical computer science the notion of bisimula-
tion inspired the definition of various notions of equiv-
alence between models of computation. Each of these
equivalences identifies classes of systems with similar
properties, so that proving a property for a certain
system can be done on a smaller equivalent system,
thereby simplifying the process.

Similar notions are also important in the context of
hybrid systems, where the inherent complexity of the
hybrid model render its analysis or design very difficult.
Motivated by this, we were naturally led to understand
the continuous counterpart of this notion. Previous
steps towards this objective have been given in [15]
where linear control systems are embedded in the class
of transition systems for which the notion of bisimula-
tion was originally introduced in [19] and also [11]. It is
shown in [15] that different embeddings give rise to se-
mantically different notions of bisimulation being char-
acterized by different conditions. For nonlinear systems
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no such attempt has appeared in the literature so far,
except in [5] where the notion of bisimulation is pre-
sented in a sufficiently abstract categorical context to
unify discrete and continuous interpretations. Com-
pared to that work, in this paper we seek not to unify,
but to characterize the notion by easily checkable (al-
gebraic) conditions.

A characterization of bisimulation for nonlinear sys-
tems is important for several reasons that go beyond
its application in hybrid systems. In the series of pa-
pers [17, 18, 21], a methodology has been introduced
to compute abstractions of linear and nonlinear con-
trol systems. These abstractions are clearly important
for verification problems, but also for hierarchical syn-
thesis. For example, in [16] hierarchical stabilization of
linear systems is discussed in the framework of abstrac-
tions. The ability to perform hierarchical synthesis de-
pends on finding low-level trajectories that implement
or refine trajectories of the abstracted model. A suf-
ficient condition is given by bisimilarity, and this fact
constitutes another reason to provide algebraic tests for
its characterization.

The notion of bisimulation is also very interesting from
a system theoretic point of view as it provides an equiv-
alence relation on the class of control systems. This can
be regarded as another tool in the quest of classifying
nonlinear control systems. Furthermore, this equiva-
lence relation has the important property of render-
ing as equivalent, control systems of possibly different
dimensions. This contrasts with other known equiva-
lences such as diffeomorphisms [10], or feedback trans-
formations [2, 7, 9]. Furthermore, the notion of bisim-
ulation also has interesting connections with other well
known notions in systems theory such as controlled in-
variance [6, 8, 12] and symmetries for nonlinear control
systems [4, 13].

In this paper we introduce two notions of bisimulation
for nonlinear control systems based on the original def-
initions in [11]. We then focus on control affine systems
and relations between them defined by subimmersions,
and provide algebraic characterizations for these no-
tions. These characterizations turn out to be related



with the notion of ®-related control systems introduced
in [17]. We then show that by factoring out certain in-
variant distributions one obtains bisimilar systems and
that all bisimilar systems are obtained in this way. The
distinguishing power of the two introduced notions is
also discussed by showing that, locally, they are equiv-
alent up to a feedback transformation. This is achieved
by relating the introduced notions of bisimulation with
controlled invariance.

For space reasons all the proofs have have been elimi-
nated, however the interested reader may wish to con-
sult them in [20].

2 Geometrical Preliminaries

Let M be a differentiable manifold and T, M its tangent
space at x € M. In this paper, we will consider that all
the manifolds are C°°, and that all related mathemat-
ical objects are also smooth. The tangent bundle of M
is denoted by TM = UpepT, M and 7y is the canon-
ical projection map 7wy : TM — M taking a tangent
vector X(z) € T,M C TM to the base point x € M.
Now let M and N be manifolds and ¢ : M — N a
map, we denote by Ty¢ : Ty M — Ty N the induced
tangent map which maps tangent vectors X at T, M to
tangent vectors Ty¢ - X at Ty, N. If ¢ is such that
T,¢ is of constant rank at z € M then we say that ¢
is a subimmersion at . When ¢ is a subimmersion at
every x € M we simply say that it is a subimmersion.
When ¢ has an inverse which is also smooth we call ¢
a diffeomorphism.

A fiber bundle is a tuple (B, M, 7, F, {0, }icr), where
B, M and F are manifolds called the total space, the
base space and standard fiber respectively. The map
wp : B — M is a surjective submersion and {O;}er
is an open cover of M such that for every ¢ € I there
exists a diffeomorphism ¥, : wgl(Oi) — O; x F making
the following diagram commutative:

7r]§1(O,-) ‘IIZ Oz x F

TB To;

K3

0; (2.1)

that is, satisfying m,, o ¥; = mp, where 7,, is the pro-
jection from O; x F to O;. The submanifold 75" () is
called the fiber at x € M and is diffeomorphic to F.
Since a fiber bundle is locally a product, we can always
find local coordinates, which we shall call trivializing
coordinates, of the form (x,b), where z are coordinates
for the base space and b are coordinates for the local
representative of the standard fiber.

Definition 2.1 A control system Xy = (M X V, Fyr)
consists of smooth manifolds M called the state space,
V' called the input space and a smooth map F : M xV
— T'M that assigns a vector X € T, M to each pair
(x,v) EM X V.

Although the previous definition captures the usual
notions of control systems, in certain situations it is
more natural to model available inputs as being de-
pendent on the state space. This dependence can be
captured by replacing the product M x V by a fiber
bundle. In this situation, we define a control sys-
tem as Xy = (Up, Fiar) consisting of a fiber bundle
Ty - Um — M called the control bundle and a map
Fyr : Uy — TM making the following diagram com-
mutative:

Fy

Um TM

TUMm ™M

M (2.2)

that is, masr o Fay = 7y, , where mpy : TM — M is the
tangent bundle projection.

In trivializing coordinates (z,v), the map F : Uy —
T M reduces to the familiar expression & = f(z,v) with
v € 7(1;1\14 (z). In the special case where the control
bundle is trivial, that is, Upy = M x V we recover
Definition 2.1.

Having defined control systems the concept of trajec-
tories or solutions of a control system is naturally ex-
pressed as follows:

Definition 2.2 A smooth curve ¢ : I — M, I =
|71, 72| € RY is called a trajectory of control system
Yar = (Uns, Fag), if there exists a smooth curve ¢V : T
— V' such that:

d 1%
et) =Fle().c" (1) Vtel  (23)

When we need to consider a fiber bundle Uj; instead
of the product M x V, we replace ¢V by ¢V : I — Uy
and require commutativity of the following diagrams:

UM UM
CU UM CU FM
I——M [——~TM (2.4)

where we have identified I with TI. These commuta-
tive diagrams are equivalent to the following equalities:

Ty o = ¢

Te = Fuy(d)



which express globally the equality (2.3).

A (left) action of a Lie group G on a manifold M is
amap 0 : G x M — M such that 6(e,z) = = and
0(g192, ) = 0(g1,0(92,x)), where e is the group iden-
tity and g1,92 € G (see [1]). Given a point x € M we
can define the orbit of # through z to be the following
subset of M:

{z' e M : 2’ =0(x,g) for some g € G}

An action is said to be free when 0(g,z) =2 =g =ce
and proper when the map 0(g,z) = (z,0(g,7)) is
proper. When 6 : G x M — M is a free and proper
action, then M /G, the space of orbits of § is a smooth
manifold and the projection = : M — M/G taking
each point in M to its orbit is a smooth surjective sub-
mersion [1]. Furthermore by fixing any g € G we obtain
0(g,—) =0, : M — M a diffeomorphism of M.

3 Bisimulation Relations

The notion of bisimulation is originally credited to [19]
and [11], and since then many authors have made im-
portant contributions to its development. In the con-
text of continuous control systems, bisimulations have
been discussed for the first time in [15] for linear control
systems. We start by recalling the concept of transition
system and bisimulation as presented in [11].

Definition 3.1 A transition system is a tuple T =
(S, L,—) consisting of:

o A set of states S;
e A set of labels L;

e A transition relation —C S x L x S.

We use the graphical representation ¢; LN ¢2 to denote
(q1,1, g2) €—. Intuitively, one can regard a transition
system as a nondeterministic control system. Given a
state s € S, one interprets the set of labels [ € L such

that s —— s’ for some s’ € S, as the set of control in-
puts available at state s. Choosing one of those inputs
will make the transition system evolve to the new state

or states s’ satisfying s 1, &, The nondeterminism is
captured by the fact that different triples (s,!,s’) and
(s,1,8") may belong to —. This is the analogy that
we shall make use to provide a continuous counterpart
of the notion of bisimulation that we now recall.

Definition 3.2 Let T = (S1,L,—1) and Ty =
(Sa, L,—2) be transition systems. A relation H C
S1 x Sy is said a bisimulation relation between T and
Ts if (s1,82) € H implies for alll € L:

e if sy *lq s} then there exists a sy € Sy such that

!
So —2 85 and (s}, s5) € H.

e if so —l>1 sh then there exists a s} € S1 such that

!
s1 —2 81 and (s},sh) € H.

To import this notion into the continuous context we
face the difficulty of not being able to express the
continuous dynamics in terms of the “atomic” jumps

S1 4 s1. We shall, therefore, replace the atomic
jumps for any evolution, that is, we will ask a control
system to match the evolution of another control sys-
tem for every instant of time. Furthermore, as trajec-
tories must be obtained by using the same input trajec-
tory (the same input symbols), the input space cannot
depend on the state space. We shall, therefore assume,
that the control bundle is a product Upy = M x V,
being V' the input space. Naturally, this leads to the
following notion of bisimulation for control systems:

Definition 3.3 Let ZM = (UM, F]u) and EN =
(Un, Fn) be control systems such that Upyy = M x V
and Uy = NxV. A relation H C M x N 1is said to be a
bisimulation relation between ¥y and Xy if (z,y) € H
implies:

1. for any state trajectory cpr : I — M of Xas with
e (0) = x determined by input trajectory ¥ : I
— V' there exists a state trajectory cy : I —
N of ¥n with cn(0) = y determined by input
trajectory ¢V : I — V such that (ca(t),en(t)) €
H for everyt € 1.

2. for any state trajectory cy : I — N of X with
en(0) = y determined by input trajectory ¢V : 1
— V' there exists a state trajectory cpy @ I —
M of Xpr with ¢p(0) = x determined by input
trajectory ¢V : I — V such that (car(t), en(t)) €
H for every t € 1.

As we shall see soon, this notion of bisimulation will
be quite restrictive. This will motivate more relaxed
notions of bisimulation, and in particular, we shall con-
sider an input abstract version. This new notion relaxes
the requirement that both systems have the same input
trajectories and furthermore can be easily expressed
without the assumption of trivial control bundles, be-
ing therefore, better suited for global analysis of control
systems.

Definition 3.4 Let Xy = (Up,Fuy) and En =
(Un, Fy) be control systems. A relation H C M x N
is said to be an input abstract bisimulation relation be-
tween Xy and X if (z,y) € H implies:



1. for any state trajectory cpy @ I — M of Xy
with ¢pr(0) = x there exists a state trajectory
ey I — N of ¥n with ¢y(0) = y such that
(ear(t),en(t)) € H for every t € 1.

2. for any state trajectory cy : I — N of Xy
with ¢y(0) = y there exists a state trajectory
ey 2 I — M of ¥y with epr(0) = x such that
(e (t),en(t)) € H for every t € 1.

We shall say that two control systems are (input ab-
stract) bisimilar when there exists a (input abstract)
bisimulation between then.

The above introduced notions of bisimulation are also
important from a systems perspective since they allow
a new type of classification of control systems. Indeed,
the notion of bisimulation defines an equivalence rela-
tion in the class of control systems:

Proposition 3.5 Bisimulation and input abstract
bisimulation are equivalence relations on the class of
control systems.

These equivalence relations have the important charac-
teristic of rendering equivalent, systems of possibly dif-
ferent dimension. It therefore makes sense to consider
as representative of each equivalence class, the system
of smallest dimension, leading to notions of minimality.

4 A Characterization of Bisimulation

We start by making some assumptions that will allow
to provide simple characterizations of bisimilar control
systems:

1. The control systems are assumed to be control
affine, that is, locally (globally in the case of triv-
ial control bundles) there are coordinates where
the system map takes the form Fy;y = fa(x) +

k .
> ic1 9 (@)vs

2. The associated affine distribution Dy, = fy; +
An = far+span{gi;, g%/, .., g%} is of constant
rank.

3. The relation H C M x N is induced by a smooth
map h : M — N, that is (z,y) € H iff h(z) =
h(y) where h is a subimmersion, that is, T,.h has
constant rank for every x € M.

The first two assumptions are not very restrictive since
the results obtained for affine control systems can be
lifted to fully nonlinear control systems by making use
of the notion of extended control system [14]. The third

assumption is more restrictive but its justified by the
fact that in [18] a construction has been presented for
the computation of quotients of control systems based
on such a quotient map. It is therefore of extreme im-
portance to be able to determine when such quotients
are in fact bisimilar to the original one with respect to
the quotient map.

Before characterizing bisimulation we recall that given
a control system X,; and a subset S of M, we say
that S is invariant for ), iff every trajectory of ¥,
starting at a point x € S remains in S for all time.
It follows easily that S must contain the all the points
reachable by Xjs from S. This notion of invariance
allows the characterization of bisimulation given in the
next theorem:

Theorem 4.1 Let Xy = (Uy,Fuy) and En =
(Un, Fy) be two control affine systems such that Uy =
MxV andUy = NxV,andh: M — N a subimmer-
sion. Then X is bisimilar to Xn wvia h iff for every
xz e M:

o (M) is invariant for ¥
e T, h(Dpy(x)) =Dy o h(x)

o for every X € Dy there exists a Y € Dy such
that Tyh - X (z) =Y o h(x).

The above characterization shows how restrictive the
notion of bisimulation is, since every vector field in Dy,
must be h-related to some vector field in Dy. Relax-
ing this condition was the motivating factor behind the
notion of input abstract bisimulation whose character-
ization is now presented.

Theorem 4.2 Let Xj; and X n be two control affine
systems and h : M — N a subimmersion. Then X

is input abstract bisimilar to Xy via h iff for every
reM:

o (M) is invariant for Ly

o T,h(Dp(x)) = Dy o h(z)

We note that since the relation H C M x N is de-
fined by a map h : M — N, the first condition on
the definition of input abstract bisimulation can be re-
frased as: for every trajectory cpr of Xar, h(ear) must
be a trajectory of Y. This was the basic definition
of abstraction introduced in [17], so that it is natural
that the characterization of (input abstract) bisimu-
lation is a stronger version of the concept of ®-related
control systems, which is the algebraic characterization
of abstractions. It is also interesting to note that the



characterization of input abstract bisimilarity, given in
Theorem 4.2 distinguishes these systems from general
abstractions at the level of the structure of the control
bundle as discussed in [21]. In fact, when a control sys-
tem is bisimilar to its abstraction, no new inputs will
appear on the abstraction, a phenomena that does not
occur for general abstracted systems [17].

We now clarify how different can (input abstract)
bisimilar control systems be if they have different di-
mensions. For this we will assume that dim(M) >
dim(N), and recall the notions of invariant and con-
trolled invariant distributions:

Definition 4.3 Let X be a control affine system and
let £ be a regular distribution on M. Distribution &£ is
said to be invariant for X when:

Distribution & is said locally controlled invariant if
there exist a local feedback transformation around each
x € M, such that £ is invariant for the feedback trans-
formed system.

Locally controlled invariant distributions also admit
the following characterization:

Theorem 4.4 (Adapted from [3]) Let Xy be a
control affine system and £ a regular distribution on
M. The distribution £ is locally controlled invariant
for X iff:

D, E] CE+ Au

where Ay = span{gi;, g3, 9%}

Equipped with the notions of invariant and controlled
invariant distributions we can now understand the re-
lationship between (input abstract) bisimilar systems
of different dimensions.

Theorem 4.5 Let Xy = (Upy,Fy) and ¥y =
(Un, Fn) be control affine systems such that Uy =
MxV,Uy =NxV,dim(M) > dim(N) and let h : M
— N be a surjective subimmersion. Then X is input
abstract bisimilar to X wvia h iff ker(Th) is invariant
for Xy and X is defined by the affine distribution:

Dy oh(z) = U

z'€h—1loh(z)

T h(Dps (2))

For input abstract bisimulation we recover local con-
trolled invariance:

Theorem 4.6 Let >y and Xn be control affine sys-
tems such that dim(M) > dim(N) and h : M — N

a surjective subimmersion. Then Xy is input abstract
bisimilar to X via h iff ker(Th) is locally controlled
invariant for Xy and XN is defined by the affine dis-
tribution:

Dy o h(z) = U

z’€h—1loh(z)

T h(Dar ("))

The previous characterization of (input abstract)
bisimulation shows that although dimension is not con-
stant on the equivalence classes of this equivalence, two
control systems s and Xy of different dimensions
are in the same equivalence class if and only if it is
possible to obtain one from the other by factoring out
(controlled) invariant distributions. As an immediate
corollary of the previous results we have that factoring
out symmetries also produces bisimilar systems:

Corollary 4.7 Let X be an affine control system and
0:Gx M — M be a free and proper action of a Lie
group G such that for every X € Dy we have 07X = X
for every g € G. Then Xy is bisimilar via w to /G
defined by:

Dy om(x) = U

z'em—lom(z)

T (D (2'))

For input abstract bisimilar systems it is still the case
that factoring out symmetries implies input abstract
bisimilarity but we allow a larger class of symmetries:

Corollary 4.8 Let X be an affine control system and
0 : Gx M — M be a free and proper action of a
Lie group G such that for every X € Dy we have
0;X € D for every g € G. Then X is input ab-
stract bisimilar via © to Xpr /G defined by:

Dy on(z) = U

z'en—lom(x)

Tm/’/’r(’D]u (.’L‘I))

We have not explicitly discussed the quotient system
Y n/G control bundle geometry. We defer the reader
to the reference [21] where these issues are addressed for
general quotients and to [4, 13] where symmetries are
modeled by group actions acting on the control bundle
as well.

It is clear that the equivalence relation defined by
bisimulation is strictly finer (in the sense that it dis-
tinguishes more control systems) then the equivalence
relation defined by input abstract bisimulation. How-
ever, locally, every two input abstract bisimilar control
systems are bisimilar up to a feedback transformation.
This fact is a simple consequence of Theorem 4.4. This
proves the following result:



Proposition 4.9 Let X); and Xy be affine control
systems input abstract bisimilar via h : M — N.
Then, locally, there exists a feedback transformation for
Yy rendering it bisimilar to Xn via h.

Note that the previous result does not assert that X,
is bisimilar to ¥ since the feedback transformation is
not a bisimulation relation.

5 Conclusions

Motivated by notions of equivalence in computer sci-
ence and hybrid systems, we have introduced the no-
tion of (input abstract) bisimulation for nonlinear con-
trol systems. A differential algebraic characterization
was given for the introduced notions capturing the no-
tion of ®-related control systems of [17]. Although this
notion constitutes an equivalence relation on the class
of control systems which does not require the dimen-
sion of the systems to be an invariant, it was shown
that bisimilar systems of different dimensions must be
related in a very special way. In fact, one of the sys-
tems must be obtained from the other by factoring out
(controlled) invariant distributions.
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