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Abstract— Distributed motion planning of multiple agents
raises fundamental and novel problems in control theory and
robotics. In this paper, we consider the problem of designing
distributed motion algorithms that dynamically assign targets
or destinations to multiple homogeneous agents. We achieve
this goal using a novel control decomposition. In particular,
navigation of every agent to any available destination is due to
distributed multi-destination potential fields, while the mutual
exclusion property of the final assignment is guaranteed by
local coordination protocols among the agents. Integration of
the proposed controllers results in a hybrid model for every
agent, while the overall system is shown to always converge
to a valid assignment and have at most polynomial complex-
ity, dramatically reducing the combinatorial nature of purely
discrete assignment problems. We conclude by illustrating our
approach through nontrivial computer simulations.

I. INTRODUCTION

Given any multi-agent motion planning task, where a

group of agents has to reach a desired destination config-

uration, the assignment problem consists of determining a

permutation of the agents in the final destination set. If no

such permutation of the agents is provided a priori, then

it has to be determined on-line. Moreover, if only local

information from neighbors is available, then the resulting

control framework is fully distributed.

Assignment problems are fundamental in combinatorial

optimization and, roughly, consist of finding a minimum

weight matching in a weighted bipartite graph. They arise

frequently in operations research, computer vision as well as

distributed robotics, where graphs are recently emerging as a

natural mathematical description for capturing interconnec-

tion topology [1] − [7]. Depending on the form of the cost

function, assignment problems can be classified as linear or

quadratic. Optimal solutions to the linear assignment prob-

lem can be computed in polynomial time using the Hungarian

algorithm [8]. The quadratic assignment problem, however,

is NP-hard [9] and suboptimal solutions are achieved by

means of various relaxations. Approaches are either purely

discrete [10], [11] or continuous [12], based on the solution

of differential equations that always converge to a discrete

assignment.

In distributed robotics, the assignment problem naturally

arises in tasks involving destination or target allocation.

Depending on whether the discrete assignment is addressed

This work is partially supported by ARO MURI SWARMS Grant
W911NF-05-1-0219 and the NSF ITR Grant 0324977.

Michael M. Zavlanos and George J. Pappas are with GRASP
Laboratory, Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, PA 19104, USA
{zavlanos,pappasg}@grasp.upenn.edu

simultaneously with the continuous navigation strategies or

is solved independently in advance, approaches can be either

on-line or off-line. An on-line approach is proposed in [13],

where the space of permutation invariant multi-robot forma-

tions is represented using complex polynomials whose roots

correspond to the unassigned configurations of the robots

in the formation. Since, the polynomial coefficients are

invariant under permutation of the roots, the representation

of the formation is invariant with respect to different robot-

destination assignments. The proposed approach is open loop

and centralized, since it requires global knowledge of the

environment. On the other hand, in [14] a polynomial time

algorithm is developed that computes off-line a suboptimal

assignment between agents and destinations based on a

“minimum distance to the goal” policy.

In this paper we propose a distributed feedback control

framework that simultaneously addresses the continuous

navigation strategies as well as the discrete assignment of

agents to destinations. Under the assumption that every agent

has knowledge of all available destinations, we build our

approach based on two novel ideas. First, provably correct

multi-destination potential fields, used to drive every agent

from almost all initial configurations to any available des-

tination, determine dynamically a sequence of destinations

to be explored by each agent [15]. Second, local coordina-

tion protocols ensure that assignments are established only

among agents and free destinations. Unlike our sensor-based

approach [15], where the presence of singularities due to ties

over available destinations could not be handled, here the

mutual exclusion property of the final assignment is always

guaranteed. Integration of the proposed controllers results in

a hybrid model for every agent, while the overall system is

shown to always converge to a valid assignment and have at

most polynomial complexity, despite the exponential growth

of the number of assignments with respect to the number of

agents. The efficiency of our algorithm is illustrated through

nontrivial computer simulations.

The rest of this paper is organized as follows. In Section

II we define the dynamic assignment problem, while in

Section III we develop the multi-destination potential fields

and discuss their convergence properties. In Section IV we

discuss local coordination protocols and define the hybrid

automata that consist the agents’ models. The overall system

is studied in Section V, where results about its complexity

and equilibrium modes are also presented. Finally, in Section

VI, we state and verify through computer simulations, non-

trivial assignment tasks that illustrate the efficiency of our

approach.
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II. PROBLEM FORMULATION

Consider n point agents in R
2 and denote by xi(t) ∈ R

2

the coordinates of agent i at time t. We assume kinematic

models for the agents and so,

ẋi(t) = ui(t) ∀ i = 1, . . . , n (1)

where ui(t) is a sought control vector taking values in R
2.

Consider, further, m ≥ n destinations in R
2 that the agents

have to reach and let I0 = {1, . . . , m} denote the index set

corresponding to a fixed labeling of these destinations. We

assume that every destination k ∈ I0 is uniquely associated

to a coordinate vector dk ∈ R
2 through the injective map,

dest : I0 → R
2 with dest(k) := dk, ∀ k ∈ I0 (2)

To simplify notation, we hereafter write dk to refer to the

injection dest(k). The system of agents and destinations de-

scribed above, gives rise to the multi-agent motion planning

problem, which we define as follows.

Definition 2.1 (Multi-Agent Motion Planning): Given a

set of n identical agents and m ≥ n destinations, derive

control laws that drive each agent to a distinct destination.

Implicit in the motion planning problem defined above,

is the assignment problem, namely, which of the
(

m
n

)

n!
possible assignments between agents and destinations system

(1) should be driven to. Given that the agents are “identical”

we consider any assignment equally desirable. A popular

approach is to decouple the assignment and navigation sub-

problems in Definition 2.1, i.e., determine first an assignment

between agents and destinations, which can be either random

or optimal, based on a “minimum distance to the goal” policy

[12], [14], and then design controllers that drive each agent

to its destination. Such approaches result in centralized and

off-line control frameworks since, although navigation can

be decentralized, an off-line centralized assignment decision

needs to be made first. In this paper we propose a dynamic

and fully distributed solution to the aforementioned prob-

lem. In particular, we assume that every agent has only

knowledge of its available destinations, while the assignment

decision is embedded in its controller and relies on inter-

agent communication. We therefore, address the following

motion planning problem.

Problem 1 (Dynamic Assignment): Given a set of n iden-

tical agents, m ≥ n destinations and no a priori assignment

information, derive distributed control laws that drive every

agent i, from any initial configuration xi(t0), to a distinct

destination k ∈ I0.

The main idea behind our approach to Problem 1 is to let

every agent explore a sequence of destinations and eventually

be assigned to the first one that is available. The sought

sequence of destinations is determined dynamically by means

of multi-destination potential fields designed to drive every

agent to any available destination. Then, the mutual exclusion

property of the final assignment is guaranteed by local

coordination protocols, developed in Section IV.
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Fig. 1. Plot of the 4-destination potential function ϕ4(xi, I
a
i
) for

dest(Ia
i
) = { [.75 .75], [−.75 .75], [−.75 − .75], [.75 − .75] }.

III. MULTI-DESTINATION POTENTIAL FIELDS

Let Ia
i ⊆ I0, with |Ia

i | = v ≤ m,1 denote the set of

destinations that agent i considers available2 and define the

distance of agent i to destination k ∈ Ia
i by γdk(xi) = ‖xi−

dk‖
2
2, where xi(t) ∈ R

2 denotes the coordinates of agent i

at time t. Then, the function γv(xi, I
a
i ) =

∏

k∈Ia
i

γdk(xi)
is a measure of the distance of agent i to the set Ia

i , since

γv(xi, I
a
i ) > 0 for all xi 	∈ dest(Ia

i ) and γv(xi, I
a
i ) =

0 only if xi ∈ dest(Ia
i ). Consider, further, the monotone

increasing functions in [0,∞) σ(y) = y
1+y and τκ(y) =

yκ, κ > 0 and define the v-destination potential function

ϕv : R
2 → [0, 1] by the composition (Figure 1),

ϕv(xi, I
a
i ) = τ1/κ ◦ σ ◦ τκ ◦ γv(xi, I

a
i ) (3)

The following proposition enables us to characterize the

critical points of ϕv(xi, Ia
i ) by examining the simpler func-

tion γv(xi, I
a
i ).

Proposition 3.1 ([16]): Let I1, I2 ⊆ R be intervals, γ :
F → I1 and σ : I1 → I2 be analytic. Define the composition

ϕ : F → I2 to be ϕ = σ◦γ. If σ is monotonically increasing

on I1, then the sets of critical points of ϕ and γ coincide,

i.e., Cϕ = Cγ , and the index of each point is identical, i.e.,

index(ϕ)
∣

∣

Cϕ
= index(γ)

∣

∣

Cγ
.

Proposition 3.1 implies that ϕv(xi, I
a
i ) and γv(xi, I

a
i )

share identical critical points. In order to characterize the

critical points of γv(xi, I
a
i ) we make use of harmonic

functions [17]. In particular, by Proposition 3.1 γv(xi, Ia
i )

and log(γv(xi, I
a
i )) share identical critical points too. But

log(γv(xi, I
a
i )) is harmonic (completely free of local min-

ima) and so almost global convergence of our potential field

ϕv(xi, I
a
i ) is guaranteed. We, thus, have the following result,

which we state without proof due to space limitations.

Theorem 3.2: For any fixed destination set Ia
i with |Ia

i | =
v, the multi-destination control system,

ẋi = uv(xi, I
a
i ) := −K∇xi

ϕv(xi, I
a
i ) (4)

with K > 0 a positive constant, is globally asymptotically

stable almost everywhere (except for a set of measure zero).

According to Theorem 3.2, system (4) guarantees that

agent i will eventually reach any destination in Ia
i . Whether

an assignment will be established, depends on whether

the particular destination is available or not, and relies on

distributed coordination among neighboring agents.

1We denote by |A| the cardinality of the set A.
2The sets Ia

i
will be formally defined in Section IV.
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IV. DISTRIBUTED COORDINATION

Let I(t) denote the index set of available destinations at

time t ≥ t0 and denote by Ic(t) = I0\I(t) its complement,

where initially, I(t0) = I0 and Ic(t0) = ∅. Similarly, let

Ia
i (t) denote the index set of available destinations from the

perspective of agent i and define the set of taken destinations

of agent i by It
i (t) = I0\I

a
i (t). Since Ia

i (t) ∩ It
i (t) = ∅,

no destination can be considered both available and taken,

while Ia
i (t) ∪ It

i (t) = I0 implies that any destination that

is not available, has to be taken. The sets Ia
i (t) and It

i (t)
are initialized such that every agent has knowledge of all

available destinations in I0, i.e., Ia
i (t0) = I0 and It

i (t0) = ∅,

while we also require that Ia
i (t) = {k} if and only if agent

i is assigned to destination k ∈ I0.

To achieve local coordination among the agents, we further

define the set of neighbors of agent i at time t by N ǫ
i (t) =

{j | xj(t) ∈ Bǫ(xi(t))}, where ǫ > 0 indicates the coordina-

tion radius of agent i and Br(x) = {y ∈ R
2 | ‖y−x‖2 < r}

denotes an open ball of radius r > 0 centered at x ∈ R
2. On

the other hand, to efficiently handle ties over the destinations,

i.e., situations where multiple agents simultaneously claim

the same destination, we require that every agent can identify

the set of candidate agents Ci(t) requesting to be assigned

to the same destination at time t, and can also break the tie

if necessary. To achieve this specification, we introduce a tie

breaking function, tb : 2N\{∅} → N such that,

tb(A) := i ∈ A

where i ∈ A can be chosen according to any policy,

deterministic or not, and assume that every agent is equipped

with such a function. Then, the action tb(Ci), taken by any

of the agents in Ci, can break a tie for any destination, while

the outcome can be transmitted to the other neighbors.

Under the assumption that all agents are equipped with

local coordination mechanisms, we now state our problem

specifications.

Assumptions 4.1: For every agent i = 1, . . . , n we assume

that, for all time t ≥ t0,

(a) it can be assigned to an available destination k ∈ I(t),
if k ∈ Ia

i (t), |Ia
i (t)| > 1 and xi(t) ∈ Bδ(dk),

(b) there is a controller uv(xi(t), I
a
i ), that for any fixed

index set Ia
i can drive it to any destination in Ia

i ,

(c) δ, ǫ > 0 are such that Bδ(dk) ∩ Bδ(dl) = ∅ for all

k, l ∈ I0 and ǫ > 2δ.

Assumption 4.1(a) implies that agent i can only be as-

signed to an available destination in Ia
i (t) if it is sufficiently

close to that destination, while Assumption 4.1(b) says that

every agent is able to navigate to any of its available

destinations, unless it has already been assigned to a destina-

tion, whence it should always remain in a neighborhood of

that destination. Note that system (4) satisfies Assumption

4.1(b). On the other hand, Assumption 4.1(c) combined

with Assumption 4.1(a) guarantees that every agent can

only claim one destination at a time, while combined with

Assumption 4.1(b) implies that any agent sufficiently close

to a destination knows whether this destination is taken or

not.

ẋi = um(xi, I
a
i )

|Ia
i | = m

true

updatei

|Ia
i | = 1

updatei

updatei

updatei

|Ia
i | = m − 1

ẋi = um−1(xi, I
a
i )

|Ia
i | = m − 1

ẋi = um−2(xi, I
a
i )

|Ia
i | = m − 2

ẋi = u1(xi, I
a
i )

|Ia
i | = 1

updatei

|Ia
i | = m − 2

|Ia
i | = m − 2

|Ia
i | = 1

Init
true

Fig. 2. Navigation Automaton for Agent i.

A. Modeling the Agents

Developing discrete in nature coordination protocols and

integrating them with the continuous multi-destination poten-

tial fields of Section III, gives rise to a hybrid model for every

agent [18]. In particular, every agent consists of a navigation

automaton generating a path to any destination in Ia
i (t),

and a coordination automaton responsible for identifying its

neighbors N ǫ
i (t) for all time t and exchanging information

with them. The following notion of a predicate enables us

to formally define the aforementioned automata.

Definition 4.2 (Predicate): Let X = {x1, . . . , xn} be a

finite set of variables. We define a predicate ψ(X) over X to

be a finite conjunction of strict or non-strict inequalities over

X . We denote the set of all predicates over X by Pred(X).

In other words, a predicate is a logical formula. For

example, the predicate ψ(X) =
(

‖x − x0‖2 < r
)

over the

set of variables X ∈ R
N returns 1 if x belongs in the open

ball ‖x − x0‖2 < r and 0 otherwise. Hence, the navigation

automaton of agent i can be defined as follows.3

Definition 4.3 (Navigation Hybrid Automaton): We

define the navigation hybrid automaton of agent i to be the

tuple Ni = (XNi
, VNi

, ENi
, ΣNi

, sync, inv, init, guard,

reset, f low), where,

• XNi
= {xi} denotes the set of owned state variables

with xi ∈ R
2.

• VNi
= {1, . . . , m, Init} denotes the finite set of control

modes.

• ENi
= {(Init,m), (v, v − p), ∀ 0 < p ≤ v − 1 | v ∈

VNi
\{1, Init}} denotes the set of control switches.

• ΣNi
= {updatei} denotes the set of synchronization

labels.

• sync : ENi
→ ΣNi

with sync(e) = updatei for all

e ∈ ENi
\{(Init,m)}, denotes the synchronization map

mapping each control switch to a synchronization label.

• inv : VNi
→ Pred(XNi

) with inv(v) = true for all

v ∈ VNi
, denotes the invariant conditions of the hybrid

automaton.

3To simplify notation, we hereafter drop the dependence of the state
variables on time.
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• init : VNi
→ Pred(XNi

) with init(v) = true for

v = Init denotes the set of initial conditions.

• guard : ENi
→ Pred(XNi

) with guard
(

(Init,m)
)

=
true and guard

(

(v, v − p)
)

=
(

|Ia
i | = v − p

)

for all

v ∈ VNi
\{1, Init} and all 0 < p ≤ v − 1, denotes the

set of guards of the hybrid automaton.

• reset : ENi
→ XNi

with xi := reset(e) = xi for all

e ∈ ENi
, denotes the set of resets associated with the

guards of the hybrid automaton.

• flow : VNi
→ ẊNi

with ẋi := flow(v) = uv(xi, I
a
i )

for v ∈ VNi
\{Init} and ẋi := flow(Init) = 0,

denotes the flow conditions of the hybrid automaton

that constrain the first time derivatives of the system

variables in mode v ∈ VNi
.

By Definition 4.3, for any automaton Ni, we see that

|Ia
i | = v for all v ∈ VNi

. Hence, every mode of Ni

corresponds to a distinct number v of available destinations

for agent i. While automaton Ni is in mode |Ia
i | = v,

control law (4) guarantees to drive agent i to one of the

destinations in Ia
i . On the other hand, transitions in Ni are

triggered whenever the set of available destinations Ia
i is

updated. Such updates can either take place because a free

destination has been discovered or because information about

taken destinations has been received from agent i’s neighbors

N ǫ
i . Note, however, that every such transition v

e
→ v′ results

in v′ < v and so, eventually v = 1 which indicates an

assignment for agent i. Note also that these transitions are

synchronized with transitions of the coordination automaton

due to synchronization labels sync(e) = updatei. Figure 2

shows the graph representation of hybrid automaton Ni.

In the following we define the coordination automaton for

agent i. The coordination automaton is designed to continu-

ously update agent i’s neighbors N ǫ
i , while the coordination

mechanism uses nearest neighbor information and describes

how agent i should update its state variables Ia
i and It

i , when

it is close to an available destination, when it is close to a

taken destination, when it has been assigned to a destination

and when it is far from any destination.

Definition 4.4 (Coordination Hybrid Automaton): We de-

fine the communication hybrid automaton of agent i

to be the tuple Ci = (XCi
, VCi

, ECi
, ΣCi

, sync, inv,

init, guard, reset, f low), where,

• XCi
= {Ia

i , It
i ,N

ǫ
i , Ci} denotes the set of owned state

variables with Ia
i , It

i ∈ 2I0 and N ǫ
i , Ci ∈ 2{1,...,n}.

• VCi
= {Init, N, I, U,Ok, Ak, Tk, Bk, Rk | k ∈ I0}

denotes the finite set of control modes.4

• ECi
= {(Init, N), (N, I), (I, N), (I, U), (U, N), (N, Ok),

(Ok, N), (N, Ak), (Ak, Tk), (Ak, Bk), (Tk, N), (Bk, Rk),
(Rk, N) | k ∈ I0}, denotes the set of control switches.

• ΣCi
= {updatei, tiebreakk | k ∈ I0} denotes the set

of synchronization labels.

• sync : ECi
→ ΣCi

with,

– sync
(

(Ak, Bk)
)

= tiebreakk, for all k ∈ I0,

4The shorthand notation stands for I := New Info, N := Neighbors,
U := Update, Ok := Dest k Own, Tk := Dest k Taken, Ak :=
Dest k Available, Bk := Tie Break k and Rk := Tie k Resolved.

xi �∈
⋃

l∈I0
Bδ(dl)

It
i := It

i ∪ {k} ∪
(

⋃

j∈N ǫ

i
It

j

)

Init

true

Ia
i := I0

It
i := ∅

N ǫ
i := {j | xj ∈ Bǫ(xi)}

true

xi ∈ Bδ(dk)

∧ Ia
i �= {k}

Ci := {j ∈ N ǫ
i | xj ∈ Bδ(dk)} ∪ {i} Dest k

Available
N ǫ

i := {j | xj ∈ Bǫ(xi)}

Tie
Break k

Tie k
Resolved

tiebreakkCi := tb(Ci)

tiebreakk

∧ i �= min{Ci}

N ǫ
i := {j | xj ∈ Bǫ(xi)}

i ∈ Ci

Ia
i := {k}

updatei

i �∈ Ci

Ia
i := Ia

i \I
t
i

updatei

Neighbors

Dest k
Own

It
i := It

i ∪
(

⋃

j∈N ǫ

i
It

j

)

xi ∈ Bδ(dk) ∧ Ia
i = {k}

N ǫ
i := {j | xj ∈ Bǫ(xi)}

Update

It
i := It

i ∪
(

⋃

j∈N ǫ

i
It

j

)

Ia
i := Ia

i \
(

⋃

j∈N ǫ

i
It

j

)

N ǫ
i := {j | xj ∈ Bǫ(xi)}

updatei

Dest k
Taken

Ci = {i}

Ia
i := {k}

∧ k �∈
⋃

j∈N ǫ

i
It

j

Ci �= {i}

Ci �= {i} ∧ i = min{Ci}

New
Info

xi ∈ Bδ(dk)
∧ Ia

i �= {k} ∧ k ∈
⋃

j∈N ǫ

i
It

j

Ia
i ∩

(

⋃

j∈N ǫ

i
It

j

)

�= ∅

Ia
i ∩

(

⋃

j∈N ǫ

i
It

j

)

= ∅N ǫ
i := {j | xj ∈ Bǫ(xi)}

Fig. 3. Coordination Automaton for Agent i.

– sync
(

e
)

= updatei, for e = (U,N), (Tk, N),
(Rk, N).

denotes the synchronization map mapping each control

switch to a synchronization label.

• inv : VCi
→ Pred(XCi

) with inv(v) = true for all

v ∈ VCi
, denotes the invariant conditions of the hybrid

automaton.

• init : VCi
→ Pred(XCi

) with init(v) = true for

v = Init, denotes the set of initial conditions.

• guard : ECi
→ Pred(XCi

) with,

– guard
(

(N, I)
)

=
(

xi 	∈ ∪l∈I0
Bδ(dl)

)
∨

(

xi ∈
Bδ(dk) ∧ Ia

i 	= {k} ∧ k ∈ ∪j∈N ǫ
i
It

j

)

, for all

k ∈ I0,

– guard
(

(I, N)
)

=
(

Ia
i ∩

(

∪j∈N ǫ
i
It

j

)

= ∅
)

,

– guard
(

(I, U)
)

=
(

Ia
i ∩

(

∪j∈N ǫ
i
It

j

)

	= ∅
)

,

– guard
(

(N, Ok)
)

=
(

xi ∈ Bδ(dk) ∧ Ia
i = {k}

)

,

for all k ∈ I0,

– guard
(

(N, Ak)
)

=
(

xi ∈ Bδ(dk) ∧ Ia
i 	= {k}

∧ k 	∈ ∪j∈N ǫ
i
It

j

)

, for all k ∈ I0,

– guard
(

(Ak, Tk)
)

=
(

Ci = ∅
)

, for all k ∈ I0,

– guard
(

(Ak, Bk)
)

=
(

Ci 	= ∅
)

, for all k ∈ I0,

– guard(e) = true, otherwise,

denotes the set of guards of the hybrid automaton.

• reset : ECi
→ XCi

with, [Ia
i It

i N ǫ
i Ci] := reset(e)

such that,

– reset
(

(Init, N)
)

=
[

I0 ∅ {j | xj ∈ Bǫ(xi)} ∅
]

,

– reset
(

(N, I)
)

=
[

Ia
i It

i N ǫ
i Ci

]

,

– reset
(

(I, N)
)

=
[

Ia
i It

i {j | xj ∈ Bǫ(xi)} Ci

]

,

– reset
(

(I, U)
)

=
[

Ia
i \

(

∪j∈N ǫ
i
It

j

)

It
i ∪

(

∪j∈N ǫ
i

It
j

)

N ǫ
i Ci

]

,

WeB14.4

1176



– reset
(

(U, N)
)

=
[

Ia
i It

i {j | xj ∈ Bǫ(xi)} Ci

]

,

– reset
(

(N, Ok)
)

=
[

Ia
i It

i ∪
(

∪j∈N ǫ
i
It

j

)

N ǫ
i Ci

]

,

– reset
(

(Ok, N)
)

=
[

Ia
i It

i {j | xj ∈ Bǫ(xi)} Ci

]

,

– reset
(

(N, Ak)
)

=
[

Ia
i It

i ∪ {k} ∪
(

∪j∈N ǫ
i

It
j

)

N ǫ
i {j ∈ N ǫ

i | xj ∈ Bδ(dk)} ∪ {i}
]

,

– reset
(

(Ak, Tk)
)

=
[

{k} It
i N ǫ

i Ci

]

,

– reset
(

(Ak, Bk)
)

=
[

Ia
i It

i N ǫ
i tb(Ci)

]

, if i =
min{Ci} and reset

(

(Ak, Bk)
)

=
[

Ia
i It

i N ǫ
i Ci

]

,

if i 	= min{Ci},

– reset
(

(Tk, N)
)

=
[

Ia
i It

i {j | xj ∈ Bǫ(xi)} Ci

]

,

– reset
(

(Bk, Rk)
)

=
[

{k} It
i N ǫ

i Ci

]

, if i ∈ Ci and

reset
(

(Bk, Rk)
)

=
[

Ia
i \I

t
i It

i N ǫ
i Ci

]

, if i 	∈ Ci,

– reset
(

(Rk, N)
)

=
[

Ia
i It

i {j | xj ∈ Bǫ(xi)} Ci

]

,

for all k ∈ I0, denotes the set of resets associated with

the guards of the hybrid automaton.

• flow : VCi
→ ẊCi

with [İa
i İt

i Ṅ ǫ
i Ċi] := flow(v) =

[0 0 0 0] for all v ∈ VCi
, denotes the flow conditions

of the hybrid automaton that constrain the first time

derivatives of the system variables in mode v ∈ VCi
.

Observing Definition 4.4 we see that whenever agent i is

sufficiently close to an available destination k, automaton Ci

transitions to mode Ak and the set of taken destinations It
i

is updated with new information from neighbors, according

to reset((N, Ak)). If there is no need for tie breaking or

if agent i wins the tie break, destination k is assigned

to agent i, as indicated by the resets reset((Ak, Tk)) and

reset((Bk, Rk)), respectively. On the other hand, if agent

i loses the tie break, then Ia
i is updated by removing

any new taken destinations, according to reset((Bk, Rk)).
Now, if agent i is close to a taken destination or if it

is far from any destination, automaton Ci transitions to

mode I and exchanges information with its neighbors in

order to update the sets of available and taken destina-

tions Ia
i and It

i , according to the resets reset((I, N)) and

reset((U,N)). Note that whenever the state variable Ia
i is

updated with new information, a transition is automatically

triggered in automaton Ni due to synchronization labels

“updatei”. This synchronization models the communication

between automata Ci and Ni. Similarly, in a case of a tie

for destination k, all the involved coordination automata

are synchronized according to the synchronization labels

“tiebreakk” to participate in a tie break where the agent

with the smallest label is responsible for breaking the tie,

according to reset((Ak, Bk)). Figure 3 shows the graph

representation of hybrid automaton Ci.

V. INTEGRATED SYSTEM

Having defined the models for the agents, we now proceed

with their composition in an overall product system S and

study its convergence properties [18]. The following result

characterizes the transition guards in S. 5

Proposition 5.1: For any agent i and any destination k ∈
I0 such that xi ∈ Bδ(dk) and Ia

i 	= {k}, the product system

S satisfies:

5Due to space limitations, a formal definition of the product system S as
well as proofs of the results in this section are omitted.

(a) k 	∈ ∪j∈N ǫ
i
It

j if and only if destination k is available.

(b) k ∈ ∪j∈N ǫ
i
It

j if and only if destination k is taken.

Proposition 5.1 implies that the product system S can

always identify whether a destination is available or taken.

The following result shows that agent i is always assigned

to an available destination if it is sufficiently close to it,

while it appropriately updates its sets of available and taken

destinations, Ia
i and It

i respectively, otherwise.

Proposition 5.2: For any agent i, any destination k ∈ I0

and all time t, the product system S satisfies:

(a) If xi(t) ∈ Bδ(dk) and destination k is available at

time t, then Ia
i (t) := {k} and It

i (t) := It
i (t) ∪ {k} ∪

(

∪j∈N ǫ
i (t) I

t
j(t)

)

.

(b) If destination k is available at time t and xi(t) ∈ Bδ(dk)
simultaneously for multiple agents i, then S is able to

break the tie.

(c) Ia
i (t) := Ia

i (t)\
(

∪j∈N ǫ
i (t) I

t
j(t)

)

and It
i (t) := It

i (t) ∪
(

∪j∈N ǫ
i (t) I

t
j(t)

)

otherwise.

Proposition 5.2 further implies that Ia
i (t)∩It

i (t) = ∅ and

Ia
i (t) ∪ It

i (t) = I0, whenever |Ia
i (t)| > 1, as required in

Section IV. The following proposition shows that every agent

that has not yet been assigned to a destination, has always

knowledge of at least all available destinations in I(t). This

result is necessary to show that every agent will eventually

be assigned to a distinct destination in I0.

Proposition 5.3: The product system S guarantees that

I(t) ⊆ Ia
i (t) for all time t and all agents i with |Ia

i (t)| > 1.

Our next result concerns the running time of the hybrid

system S. In particular, we show that the product system S

in the worst case can only take a finite number of transitions

vS
eS→ v′

S such that sync(eS) = updatei for any i, which

is polynomial with respect to the number of agents n.6 This

implies that the number of assignments that can be explored

is also at most polynomial with n. This result is important,

given that the number of assignments, and hence the space

of control modes VS of S, grows exponentially with n.

Proposition 5.4: Let v⋆
S = (v⋆

N1
, . . . , v⋆

Nn
, vC1

, . . . , vCn
)

be such that v⋆
Ni

= 1 and Ia
i ∩ Ia

j = ∅ for all j 	= i.

Then, the product system S can reach v⋆
S in at most

n(n+1)
2

transitions vS
eS→ v′

S such that sync(eS) = updatei.

Having showed that the product system S satisfies the

problem specifications and has also polynomial complexity,

we now show that it also has the desired liveness and safety

properties. In other words, we show that every agent will

eventually be assigned to a destination in the set I0 and that

no two agents will be assigned to the same destination. We

hence, have the following theorem.

Theorem 5.5: For almost all initial conditions xi(t0),
7

there exists a constant T > 0 such that for all time

t > t0 + T , the product system S is in mode v⋆
S =

(v⋆
N1

, . . . , v⋆
Nn

, vC1
, . . . , vCn

) with v⋆
Ni

= 1 and Ia
i (t) ∩

Ia
j (t) = ∅ for all j 	= i. We call v⋆

S the equilibrium mode of

the system.

6A mode of the product system S is defined by the tuple vS =
(vN1

, . . . , vNn
, vC1

, . . . , vCn
) and eS indicates a transition from mode

vS to v′

S
.

7Almost all is due to the measure zero saddle points in Theorem 3.2.
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Fig. 4. Destination set dest(I0). Destinations are indicated with dots.

VI. SIMULATION RESULTS

We consider a navigation task where n = 50 randomly

initialized agents have to reach the destination set dest(I0)
shown in Figure 4 consisting of m = 50 destinations.

Figures 5 show the evolution of the system at 4 different

time instants. The destinations are denoted with blue small

circles and the δ-neighborhoods (with δ = .05) around each

destination, with big blue circles. The agents, on the other

hand, are denoted with red color and the ǫ-neighborhoods

(with ǫ = .1) of each agent, with red circles. We observe

that the hybrid system S eventually drives each agent to

a distinct destination. Moreover, in Figure 5(d) one can

see the final paths followed by two of the agents until

they reach their destinations. Note how these agents change

direction of motion when they receive information about

taken destinations from their neighbors, without actually

visiting the taken destinations themselves.
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(a) Initial Configuration.
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(b) Intermediate Configuration.
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(c) Intermediate Configuration.
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(d) Final Configuration.

Fig. 5. Simulation for n = 50 agents.

VII. CONCLUSIONS

In this paper, we considered the problem of determining

an assignment between the agents and destinations in a

multi-agent motion planning task. Navigation to any of the

available destinations was achieved through provably correct

multi-destination potential fields, while local coordination

among the agents ensured the mutual exclusion property of

the final assignment. Integration of the continuous navigation

controllers with the discrete coordination protocols resulted

in a hybrid model for every agent, while the overall system

was shown to always converge to a valid assignment and

have at most polynomial complexity, despite the exponential

growth of the number of assignments with respect to the

number of agents. Our approach was completely distributed,

since each agent had access only to local information from its

neighbors, and on-line, since the assignment was determined

dynamically as the system converged to its equilibrium.

Finally, the efficiency of our approach was verified through

non-trivial computer simulations.
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