
Flying Hot Potatoes

Pradyumna Mishra1 and George J. Pappas2

1 Department of Computer and Information Sciences
2 Department of Electrical Engineering

University of Pennsylvania

Philadelphia, PA 19104

fpmishra,pappasgg@grasp.cis.upenn.edu

Abstract

Optical communication networks and air traÆc man-
agement systems share the same fundamental routing
problem as both optical packets and aircraft must con-
tinuously move within the network, while avoiding con-

icts. In this paper, we explore the use of hot potato
and de
ection routing algorithms, which are estab-
lished routing methods in optical communication net-
works, in the con
ict-free routing of air traÆc. Hot
potato algorithms allow the incorporation of con
ict
resolution constraints into the routing problem, in con-
trast to most approaches that decouple the optimal
routing problem from the con
ict resolution problem.

1 Introduction

Research in air traÆc management systems has re-
ceived much attention recently [8]. In particular, there
has been much interest on con
ict resolution algo-
rithms [12, 6, 10, 5] as well as scheduling methods for
traÆc throughput maximization [11, 7, 3]. Despite con-
siderable progress in both con
ict resolution and opti-
mal routing, the two areas of research remain mostly
disconnected as routing methods do not incorporate
con
icts inherently in their problem formulation.

In this paper, we take a step towards bringing opti-
mal routing and con
ict resolution closer together. In
particular, we are inspired from routing methods in
optical communication networks, where optical pack-
ets cannot be bu�ered and must therefore continuously
move within the network without colliding. The non-
stationarity of both optical packets and aircraft makes
their routing problems very similar, compared to other
routing problems encountered in computer networks,
automotive networks, or robotics.

Hot potato algorithms [2, 1, 9] are established routing
algorithms for optical communication networks. In this
paper, we explore their use in the routing of air traÆc
control in the arrival space. The algorithms could, in
principle, be used in both en-route Center airspace or

in the Terminal Radar Approach Control (TRACON)
regions around airports. In this paper, we focus on
the terminal area, which is modeled as a (planar) dis-
crete graph that captures the topology of the arrival
space area, distances between VOR nodes, entry nodes
(TRACON gates), and exit nodes (landing nodes). Ini-
tially, all aircraft are assumed to be on the entry nodes,
and move with the same, constant velocity throughout.
The restrictions of planarity and uniform aircraft veloc-
ity are not necessary for the conceptual development
of the algorithms. Our goal is to route the aircraft to
the exit nodes, which model the beginning of the �-
nal approach, without two aircraft being in con
ict. A
con
ict occurs whenever two aircraft get closer than
5 miles from each other. Our airport model captures
many features of the existing airspace structure. The
discrete nature of the model, and the problems we ad-
dress are similar to the problems discussed in [4].

Optimal con
ict-free routing may easily lead to com-
binatorial optimization problems or dynamic program-
ming problems with undesirable complexity. Solutions
to such optimization problems will therefore be unre-
alistic in practice. Sacri�cing some optimality for com-
putational tractability will be crucial for eÆcient al-
gorithms that guarantee safety while being almost op-
timal. Greedy hot-potato algorithms reduce the com-
binatorial complexity by greedily advancing each indi-
vidual (optical) packet closer to its destination. In the
absence of any collision, this will be the optimum solu-
tion. However, greedy algorithms may introduce more
collisions, especially close to the destinations.

To avoid this situation we consider a variant of the
so-called de
ection routing algorithms. We begin by
pre-computing (o�-line) the greedy solution for each
node-destination pair of the airport. The can be ef-
�ciently done using Dijkstra'a algorithm. As a result
we obtain the shortest-paths tree for each destination
node which can be used to optimally route aircraft in
the absence of collisions. This will be our �rst guess at
routing, thus it is called the primary routing. For each
node of the airport, we also compute a hierarchy of de-

ection nodes which will be used in case a con
ict is

1
754



detected. This can also be done eÆciently o�-line, and
we can hierarchically rank each de
ection edge based
on the extra time or distance it adds to the route of
the aircraft.

The de
ection routing algorithm then uses the primary
routing and hierarchy of de
ections but in a greedy
manner. Aircrafts are initially on the entry nodes and
have optimal primary routes to their desired destina-
tions. At each time step, con
icts are predicted for
some time in the future. If there are no con
icts then
each aircraft proceed along their primary routes. If a
con
ict is predicted, then one of the involved aircraft
must choose a de
ection, starting with the one that
introduces minimum delay to its overall distance. If
that is not enough, then it proceeds to the next avail-
able de
ection while paying a higher price. The de-

ection routing algorithm shares similarities with the
model predictive control framework, with the main dif-
ference that no optimization is performed on-line, as
the available solutions (primary routes and de
ections)
have been pre-computed.

The outline of this paper is as follows: In Section 2 we
formulate the problem of obtaining con
ict-free routes
for multiple aircraft. In Section 3, we review some ba-
sic ideas from hot potato routing in optical networks,
and in Section 4 we describe the de
ection routing al-
gorithm in the context of air traÆc management. Sec-
tion 5 concludes this paper with many topics for further
research.

2 Problem Formulation

In this paper, an airport can informally be thought of
as a planar graph. The arrival area of an airport (TRA-
CON) consists of a �nite number of entry points called
the TRACON entry gates. Aircrafts enter the TRA-
CON area via these entry nodes only. Each of these
planes need to be directed to a destination node, which
model the beginning of the �nal approach for landing.
A plane which reaches the destination node has been
given permission to land. We assume that all planes en-
ter and move with uniform and constant velocity. This
assumption can be relaxed in future work. Between
the entry nodes and the destination nodes there exists
a �nite number of (VOR) nodes through which planes
could be routed. In this paper, we consider a 2D model
of the terminal area. A 3D model would be conceptu-
ally similar, once more at the price of complexity.

More formally, the airport is modeled as a directed
graph G = (V;E; Vin; Vout), where V � R

2 are the
nodes of the airspace around an airport , E � V �R�V
is a the set of routing edges, Vin � V are the entry
nodes, and Vout � V are the destination nodes. The
number associated with each edge models the distance

between two nodes. We also assume that the graph
is acyclic with no holding patterns, and assume that
there are no incoming links to the entry nodes, and sim-
ilarly, there exist no outgoing edges for the destination
nodes. Relaxing these assumptions will be considered
in the future. A sample airport con�guration is shown
in Figure 1. It is clear, that even though Figure 1 mod-
els the arrival area, the model can also capture en-route
traÆc.

There are n aircrafts on the network. Each aircraft i
has a source node Si 2 Vin and a destination Di 2
Vout. Initially all aircraft are on the source nodes. In
Figure 1 there are six entry nodes, six aircrafts, and two
destination nodes. The dynamics of the aircraft on the
graph is straightforward, each aircraft 
ows along an
edge with constant velocity. Each aircraft i also comes
equipped with the protected zone Pi, a disk of radius 2.5
miles centered at the center of the aircraft. A con
ict
between aircraft i and j occurs if Pi \ Pj 6= ;.

A route or a path for aircraft i with source-destination
pair (Si,Di) is a sequence of edges that start at Si and
end at Di. That is a path pi for aircraft i is a sequence

v0
d0! v1

d1! v2 � � �
dn! vn with v0 = Si, vk = Di, and for

each 0 � j � k�1 we have (vj ; dj ; vj+1) 2 E. The cost

of path pi is simply J(pi) =
Pn�1

j=0 dj .

D1 D2

S 1

S 2

S 3
S 4

S 5

S 6

E

C

F

H

M

P

I

J

B

G

1010

10
15

35

20

15

45

40

20 30 30

35

30

30
20

20 15
20

20

30
25

15

15

15

15 35

20

25

30

Figure 1: Airspace model around an airport

Our problem formation is now straightforward. Given
an airport modelG = (V ,E,Vin,Vout), n aircrafts on the
network, and a set of source-destination pairs (Si,Di)
for each aircraft (1 � i � n), determine a set of con
ict-
free paths of minimum cost. Note that in this formu-
lation, aircraft must go to their desired and predeter-
mined destinations. One can also consider the more
relaxed problem where aircraft can go to any of the
destinations.

2
755



3 Hot-Potato Routing

Hot-potato routing algorithms [2, 1] use the principle
that every packet arriving at a node has to be redi-
rected immediately to any of the its neighboring nodes.
This important class of routing algorithms are impor-
tant in optical networks since nodes of the network are
not capable of bu�ering any packet. Two packets at
the same node at the same time are said to have col-
lided if they are directed through the same outgoing
link, in which case one of them has to be removed from
the network and the other is permitted to proceed. Hot
potato algorithms try to route packets by avoiding col-
lisions and optimizing properties such as throughput
maximization (deliver the maximum number of packets
from source to destination nodes), or minimum global
path (the sum of all the distances travelled by the pack-
ets in the network). Clearly, similar problems are of
great interest in air traÆc management systems.

The general problem of routing packets from source to
destination pairs without con
ict is equivalent to the
problem of �nding disjoint paths on a graph. How-
ever, this problem is known to be NP-hard [9]. One
way of relaxing the complexity is to use greedy algo-
rithms to route packets, resulting in greedy hot-potato
de
ection routing algorithms [2]. Our air traÆc routing
algorithms are inspired from such algorithms.

3.1 Greedy Hot-Potato De
ection Routing
A hot-potato routing algorithm is called greedy [2] if
each packet (say pi) at a node is forwarded closer to its
destination whenever possible. However if such an as-
signment of a new routing node leads to a collision with
another packet (say pj) , either packet pi or the packet
pj needs to be de
ected to another node that does not
necessarily advance it closer towards its destination.
The choice of the de
ection node can also be done in
a greedy sense. Greedy de
ection algorithms are par-
ticularly attractive because they are simple and have
performed well under practical circumstances. These
algorithms are also adaptive, that is in low load situ-
ations each packet follows the shortest route to their
individual destinations. Furthermore, these algorithms
are well suited in dynamic scenarios where packets are
injected dynamically into the network.

4 Hot Potatoes in the Sky

In this section, we describe a de
ection algorithm for
routing air traÆc. The algorithm consists of three dis-
tinct parts.

1. Compute Primary Routes (O�-line)

2. Compute De
ection Routes (O�-line)

3. Greedy De
ections (On-line)

Intuitively, for each destination node of the network,
primary routing computes optimal routes for that par-
ticular destination from any other node of the network
(in the absence of any collisions). This can be eÆcient
performed o�-line and stored in the form of a tree. In
the presence of con
icts, however, planes must be de-

ected. Given the output of primary routing, for each
node we compute a variety of de
ection edges (routes),
which are ranked based on how non-optimal the de
ec-
tion is. This can also be eÆciently performed o�-line,
and stored for each node. Therefore, given a desired
destination, we have for each node a primary (optimal)
route, and an array of local de
ections in case of con-

icts.

What remains to be done is online is very simple. Air-
crafts begin at the source nodes. If there are no con-

icts predicted for the next T minutes (typically 10-20
minutes), then the aircraft proceed along their primary
routes. EÆcient con
ict prediction is critical for this
approach, and has been suÆciently addressed in the lit-
erature. If a con
ict is predicted between two aircrafts,
then one of the aircraft will take the earliest available
de
ection. In case there are many de
ections to choose
from, then the aircraft will choose greedily, that is it
will choose the de
ection which results in the smallest
price. Clearly, the earlier the prediction, the more de-

ection choices to choose from, the more optimal the
re-routing. We now describe each aspect of the overall
algorithm.

4.1 Primary Routing
Primary routing is concerned with computing optimal
paths from any airport node to each of the destinations
in the absence of any network traÆc. Ideally, under
light load conditions, traÆc should be routed using the
primary routes.

Recall that we are given a weighted, directed graphG =
(V;E; Vin; Vout), with a weight function w : E ! R

which assigns to each edge (v0; d0; v1) 2 E, the natural
number d0, which is the length of the edge. The weight

of a path p = v0
d0! v1

d1! v2 � � �
dn! vn is simply the cost

w(p) =

n�1X

j=0

dj

Given two nodes v, v0 2 V , let p(v; v0) be the set of all
paths starting at v and ending at v0. Then we de�ne
the shortest-path from v to v0 as

Æ(v; v0) = min
r2p(v;v0)

w(r) (1)

If there is no path from v to v0 then Æ(v; v0) = 1. In
a shortest-path problem, we wish to compute not only

3
756



the shortest-paths between all source-destination pairs,
but also the vertices along the shortest-paths as well.
To be more precise, we will be interested in computing
the shortest-paths tree rooted at each destination node
d 2 Vout.

A shortest-paths tree for a weighted, directed graph
G=(V,E) rooted at d 2 V is a directed subgraph G0 =
(V 0; E0) of G, which is a tree, where V

0

� V and E
0

�
E, such that

1. V
0

is the set of vertices reachable from d in G,

2. G
0

forms a rooted tree with root d, and

3. for all v 2 V
0

, the unique simple path from d to
v in the tree G

0

is a shortest (but not necessarily
unique) path from d to v in G.

We should note that the shortest-paths which are
unique in the tree G0, are not necessarily unique in
the original graph G, and neither is the shortest-paths
tree G0.

Dijkstra's algorithm is an eÆcient algorithm for com-
puting a shortest-paths tree rooted at a source node
in O(jV j2) running time, where jV j is the number of
nodes. This algorithm is used to compute the single-
source, shortest-path problem, i.e the shortest path
from a source node d to any other vertex. In our case,
rather than the single source problem, we are inter-
ested in computing the single-destination shortest-path
problem for each of the destination nodes. This can be
achieved by reversing the directions of the edges in the
graph.

If we run Dijkstra's algorithm on a directed weighted
directed graph with non-negative edge weights and a
source node, then at the termination we will have
the shortest-paths tree rooted at node d with D(v) =
Æ(v; d) computed for all vertices v 2 V , where D(v)
stands for the depth of node v in the tree G0. We
should note this depth represents the magnitude of
the shortest-path to the destination d, and the not the
usual depth of a tree.

Applying Dijkstra's algorithm on our airport graph G

with the edge directions reversed for each destination
node di 2 Vout, we can obtain the shortest-paths tree
associated with the destination di. For each destina-
tion di 2 Vout, we will denote each such tree rooted at
a destination di with SPTdi . Consider any tree SPTdi
that we obtain by this procedure; at each node there
may exist many incoming edges, but only one outgoing
edge. Thus at every node, the next node the aircraft
must visit on it's way to destination di is uniquely de-
termined. Therefore, given any node on the network,

SPT (di) gives a unique (in the tree G0), optimal route
to destination di. This destination dependent route
will be called the primary route. Furthermore, for each
node v 2 V and each destination di 2 Vout, the tree
SPT (di) uniquely determined the primary (next) rout-
ing node at v.

D1

S 1

S 2

S 3
S 4

S 5

E

C

F

H

M

P

B

G

1010

10

35

20

20 30

30

15

15

30

60

15

40

20

55

35

20

10

70
80

75
50

15

Figure 2: SPT(D1) for destination D1

D2

S 1

S 2

S 3
S 4

S 5

S 6

E

F

H

M

P

I

J

B

G

15

20

15

20 30

30

20 15

20

15

25

15

20

45

60

80

55

35

75

35

45

65
70

40

55

15

35

15

25

Figure 3: SPT(D2) for destination D2

Reconsider the airport model shown in Figure 1. Using
Dijkstra's algorithm we obtain two SPT's; one for each
destination. The tree SPT (D1) is shown in Figure 2,
and SPT (D2) is shown in Figure 3. The number inside
each node is the depth of that node, which is simply the
optimal distance from that node to the desired destina-
tion. Considering node F , we see that for destination
D1, the primary routing node is C, however for des-
tination D2 it is node B. We should note that nodes
from which we cannot reach a destination do not exist
in the corresponding trees.

4.2 De
ection Routes
Primary routes will work very well in the absence of
con
icts, and will be the �rst choice of incoming air-

4
757



craft given desired destinations. In a loaded network,
planes need to be re-routed or de
ected. In this section,
we describe how to pre-compute all the de
ection nodes
for each node that are relevant to a given destination.
The de
ection routes will use the information encoded
in the shortest-path tree SPTdi computed above.

To compute possible de
ection routes at a particular
node while still reaching the same destination di, we
run through each node of SPT (di), and inspect each
corresponding outgoing edge in the original graph G

(excluding the primary node in SPT (di)). Consider
for example node P with desired destination D2. In
Figure 4, which shows SPT (D2), the primary routing
node for destination D2 is node I . In case an aircraft at
node P needs to be de
ected (while heading to destina-
tion D2), then in the original graph G of Figure 1 there
are two non-primary edges. One edge heads to node H
and another one to node J . These two de
ection edges
are shown in Figure 4 using dashed arrows.

The price to pay for taking any of these two de
ections
can be easily quanti�ed. The optimal distance from P

to D2 is 40. Since the optimal distance from H to D2

is 35 (assuming the primary is taking from H) and the
edge from P to H has length 30 in G, then the extra
price to pay is 25. Note that there is no guarantee that
the primary will be taking from H onwards, as more
con
icts may arise later. Similarly, the extra price to
pay if the plane is de
ected to node J can be easily
computed to be equal to 5.

The procedure we just described for node P can be eas-
ily performed for each node in V , and for each desired
destination di 2 Vout. As a result, for each desired
destination we can pre-compute at each node a set of
de
ection routes or nodes, along with the de
ection
penalty associated for choosing that de
ection. One
can intuitively think of the de
ection penalty as the
di�erence in the primary routing cost of the two nodes
of the de
ection edge. We therefore sort the de
ection
edges at each node based on their de
ection penalty.

We should note that contrary to the primary routes
which have been obtained while globally minimizing
the distance from each node to the desired destinations,
the de
ection penalty is a local quantity and only pro-
vides local information. Therefore, de
ections may be
non-optimal, but on the other hand, they quite easy
to compute. In the next section, we shall use these
computations in order to avoid potential con
icts while
minimizing the de
ection penalty.

4.3 Greedy De
ections
The online algorithm consists of routing aircrafts to
there respective destinations con
ict free. Our o�-
line computations are going to assist us to determine
such routes and also how to react in case we predict

DP : 5

DP : 25

D2

S 1

S 2

S 3
S 4

S 5

S 6

E

F

H

M

P

I

J

B

G

15

20

15

20 30

30

20 15

20

15

25

15

20

45

60

80

55

35

75

35

45

65
70

40

55

15

35

15

25

Figure 4: De
ection nodes at node P for destination D2

a collision sometime in the near future. To determine
whether any two aircrafts are con
ict-free, we predict
their paths along their primary routes for T minutes
ahead (typically T = 15 or 20 minutes). It is a straight-
forward computation to determine whether these paths
are in con
ict [12]. Larger values of T we result in more
strategic con
ict resolution, but at the price of higher
complexity. Small values of T will make our routing
decisions very myopic. In case we predict that the pri-
mary paths of two aircrafts will lead to a con
ict in the
next T minutes, it would be necessary to de
ect one of
the aircrafts via another node.

In order to make de
ections as strategic as possible, we
choose the earliest possible de
ection that is available
for either aircraft. If the choice is not unique, then we
could be confronted with a number of de
ection choices
for the same destination. We then greedily choose a
route with the least de
ection penalty.

�
�
�
�

�
�
�
�

�
�
�
�

D1 D2

S 1

S 2

S 3
S 4

S 5

S 6

E

C

F

H

M

P

I

J

B

G

1010

10
15

35

20

15

45

40

20 30 30

35

30

30
20

20 15
20

20

30
25

15

15

15

15 35

20

25

30

P 1

P 2
P3

Figure 5: Primary routes in con
ict

For example let us consider the scenario of three planes
P1 located 10 miles from node E destined to D1, P2 lo-

5
758



cated 5 miles from node F destined to D1, and P3 right
on node H destined to D2. Let us assume that all the
aircraft are moving at 160 miles per hour and we are
predicting collisions 15 minutes ahead. This is equiv-
alent to looking ahead 40 miles for each planes. We
�rst try to route each plane via there primary routes
(obtained from their corresponding SPT (Di)'s. The
primary routes 40 miles ahead are shown as dashed
lines in Figure 5. Cleary such a routing leads to colli-
sion between aircrafts P1 and P2. However there are no
collisions predicted with the path of P3. Now to avoid
collision between P1 and P2, we need to de
ect P2 at
node F and route it to node B. However such a rout-
ing leads to a new collision prediction (40 miles ahead)
previously nonexistant between P2 and P3. This cre-
ates the so-called domino e�ect. One way of resolving
the domino e�ect is to place a hierarchy in the con
ict
resolution algorithm. For example, aircraft closer to
their destination get routed �rst. In this example, P1
will have a higher priority then P2, which has a higher
priority than P3. So we now de
ect P3 via F to D2.
Now these set of obtained paths are collision free, as
shown in Figure 6.

�
�
�
�

�
�
�
�

�
�
�
�

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

D1 D2

S 1

S 2

S 3
S 4

S 5

S 6

E

C

F

H

M

P

I

J

B

G

1010

10
15

35

20

15

45

40

20 30 30

35

30

30
20

20 15
20

20

30
25

15

15

15

15 35

20

25

30

P 1

P 2
P3

Figure 6: Con
ict-free routes after de
ections

5 Conclusions

In this paper, we have explored the use of hot potato
routing algorithms from optical communications to the
problem of air traÆc management. It is our hope that
this line of research will establish stronger connections
between the air traÆc management and optical com-
munications community.

Future work will focus on formally analyzing the com-
plexity of the algorithms, introduce holding patterns,
and 3D airspace, relax the uniform velocity assump-
tion, dynamic re-route aircraft in dynamic network
traÆc, and route aircraft to any of the available desti-
nations.

Acknowledgment: This research is partially sup-
ported by the University of Pennsylvania Research
Foundation.

References

[1] A. Ben-Dor, S. Halevi, and A. Schuster. Potential
function analysis of greedy hot-potato routing. Theory
of Computer Systems, 31(1):41{61, January 1998.

[2] A. Borodin, Y. Rabani, and B. Schiber. De-
terministic many { to { many hot{potato routing.
IEEE Transactions on Parallel and Distributed Sys-
tems, 8(6):587 { 596, 1997.

[3] Christopher R. Brinton. An implicit enumeration
algorithm for arrival aircraft scheduling. In Proceedings
of the 11th Digital Avionics Systems Conference, Seat-
tle, WA, October 1992.

[4] S. Devasia and G. Meyer. Automated con
ict
resolution procedures for air traÆc management. In
Proceedings of the IEEE Conference on Decision and
Control, pages 2456{2462, 1999.

[5] Heinz Erzberger, Thomas J. Davis, and Steven
Green. Design of center-tracon automation system. In
Proceedings of the AGARD Guidance and Control Sy-
posium on Machine Intelligence in Air TraÆc Manage-
ment, pages 11.1{11.12, 1993.

[6] W. H. Harman. TCAS : A system for prevent-
ing midair collisions. The Lincoln Laboratory Journal,
2(3):437{457, 1989.

[7] D.R. Isaacson, T.J. Davis, and J. E. Robinson
III. Knowledge-based runway assignment for arrival
aircraft in the terminal area. In Proceedings of the
AIAA Guidance, Navigation and Control Conference,
New Orleans, LA, August 1997.

[8] Stephen Kahne and Igor Frolow. Air traÆc
management: Evolution with technology. IEEECS,
16(4):12{21, 1996.

[9] Joseph Naor, Ariel Orda, and Raphael Rom.
Scheduled hot-potato routing. Journal of Graph Al-
gorithms and Applications, 2(4):1{20, 1998.

[10] Russell A. Paielli and Heinz Erzberger. Con
ict
probability estimation and resolution for free 
ight.
NASA Ames Research Center, Preprint, 1996.

[11] Nicolas Pujet and Eric Feron. Flight plan opti-
mization in 
exible air traÆc environments. Depart-
ment of Aeronautics and Astronautics, Massachusetts
Institute of Technology, 1995.

[12] Claire Tomlin, George J. Pappas, and Shankar
Sastry. Con
ict resolution for air traÆc management :
A study in muti-agent hybrid systems. IEEE Transac-
tions on Automatic Control, 43(4):509{521, April 1998.

6
759


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	footer: 
	header: 


