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Abstract— We consider multiple sensors randomly accessing
a shared wireless medium to transmit measurements of their
respective plants to a controller. To mitigate the packet col-
lisions arising from simultaneously transmitting sensors, we
appropriately design the sensor access rates. This is posed as
an optimization problem, where the total transmit power of the
sensors is minimized, and control performance for all control
loops needs to be guaranteed. Control performance of each
loop is abstracted as a desired expected decrease rate of a
given Lyapunov function. By establishing an equivalent convex
optimization problem, the optimal access rates are shown to
decouple among sensors. Moreover, based on the Lagrange
dual problem, we develop an easily implementable distributed
procedure to find the optimal sensor access rates.

I. INTRODUCTION

The abundance of wireless sensing devices in modern con-
trol environments, e.g., smart buildings and urban infrastruc-
ture, creates a need for sharing the available wireless medium
in an easily implementable manner that also provides control
performance guarantees. The prevalent approach for sharing
a communication medium in networked control systems
has been centralized scheduling. Scheduling may be static,
specifying that sensors transmit in some periodic sequence
predesigned to meet control objectives [1]–[3]. Deriving
optimal scheduling sequences is recognized as a hard combi-
natorial problem [4]. Scheduling may also be dynamic, where
a central authority decides which device accesses the medium
at each time step based on, e.g., plant state information [5],
[6] or wireless channel conditions [7].

In contrast to centralized approaches, we are interested
in a decentralized mechanism (random access) for sensors
to share the wireless medium. Each sensor independently
and randomly decides whether to transmit plant state mea-
surements over the channel to a controller. This mechanism
is easy to implement as it does not require predesigned
sequences of how sensors access the medium or a central
authority to take scheduling decisions. However packet col-
lisions can occur from simultaneously transmitting sensors,
resulting in control performance degradation. Sensor access
rates need to be designed to mitigate these effects.

Control under random access communication mechanisms
has drawn limited attention, to the best of our knowledge.
Comparisons between different medium access mechanisms
for networked control systems and the impact of packet col-
lisions have been considered in [8]–[11], including random
access and related Aloha-like schemes (where after a packet
collision the involved sensors wait for a random time interval
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and retransmit). Stability conditions under packet collisions
were examined in [12]. In contrast to these works, our goal
is to design the medium access mechanism so that desired
control performance is guaranteed. Related work appears
in [13], which instead considers Aloha-like retransmission
policies that lead to stability. Besides closed loop control,
sensor transmission over collision channels for optimal re-
mote estimation is considered recently in [14].

We consider multiple control loops over a shared wireless
channel (Section II). We design the rate at which the sensor
of each loop should access the channel to transmit to a
common access point/controller, in order to ensure control
performance for all loops. We employ a Lyapunov-like
control performance requirement, motivated by our work on
centralized scheduling [7]. Each control system is abstracted
via a given Lyapunov function which is desired to decrease
at predefined rates in expectation, due to the random packet
losses and collisions on the shared medium. These control
requirements are shown to be equivalent to a minimum
packet success rate on each link.

We examine the design of sensor access rates that sat-
isfy the Lyapunov control performance requirements and
minimize the average transmit power of the sensors. After
reformulating this as a convex optimization problem, a char-
acterization of the optimal sensor access rates is established
based on Lagrange duality (Section III). This characterization
reveals an intuitive decoupled form; each sensor should
access the channel at a rate proportional to the desired control
performance of its corresponding control loop, and inverse
proportional to its transmit power and the aggregate collision
effect it causes on all other control loops. Similar decoupled
structures are known in the context of random access wireless
networks [15]–[18], where the relevant quantities of interest
are data rates on links or general utility objectives. In our
case in contrast we focus on packet success rates for desired
control system performance.

In Section IV we derive a decentralized procedure con-
verging to the optimal access rates, which has an interpreta-
tion of optimizing the dual problem. The procedure is easy
to implement as it does not require the sensors to coordinate
among themselves, or to know what other sensors try to
achieve. The procedure just relies on the common access
point to provide dual variables to the sensors via the reverse
channel. We conclude with a numerical example and some
remarks (Sections V, VI).

II. PROBLEM FORMULATION

We consider a wireless control architecture where m inde-
pendent plants are controlled over a shared wireless medium.
Each sensor i (i = 1, 2, ...,m) measures and transmits the
output of plant i to an access point responsible for computing
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Fig. 1. Random access architecture over a shared wireless medium for
m = 2 control loops. Each sensor randomly decides whether to transmit to a
common access point computing the plant control inputs. When only sensor
i is transmitting on the shared medium, the message is successfully decoded
with probability qii. When another sensor j transmits at the same slot,
there is a probability qji of causing a collision at sensor i’s transmission,
rendering i’s packet lost. The goal is to design the rate at which every
sensor accesses the medium in order to guarantee control performance for
all control loops.

the plant control inputs (Fig. 1). We assume the dynamics
for all m control systems are fixed and controllers have been
pre-designed. Our goal is to design the wireless communi-
cation aspects of the problem, in particular a random access
mechanism for sensors to transmit over the shared medium.

The evolution of each control system i depends on whether
a transmission occurs on respective link i at time k or not,
denoted by a random indicator variable γi,k ∈ {0, 1}. We
suppose each system evolution is described by a switched
linear time invariant model of the form

xi,k+1 =

{
Ac,i xi,k + wi,k, if γi,k = 1
Ao,i xi,k + wi,k, if γi,k = 0

. (1)

Here xi,k ∈ Rni denotes the state of control system i at
each time k, which may in general include both plant and
controller states [19]. At a successful transmission the system
dynamics are described by the matrix Ac,i ∈ Rni×ni , where
’c’ stands for closed-loop, and otherwise by Ao,i ∈ Rni×ni ,
where ’o’ stands for open-loop. We assume that Ac,i is
asymptotically stable, implying that if system i successfully
transmits at each slot the state evolution of xi,k is stable. The
open loop matrix Ao,i may be unstable. The additive terms
wi,k model an independent (both across time k and across
systems i) identically distributed (i.i.d.) noise process with
mean zero and covariance Wi � 0.

Communication in our random access framework takes
place in time slots. At every time k each sensor i randomly
and independently decides to access the channel with some
constant probability αi ∈ [0, 1]. The vector of sensor access
rates α ∈ [0, 1]m is the design variable in our system.
The sensor measurements transmitted in the shared wireless
medium may be dropped due to two reasons. First, if only
some sensor i transmits at a time slot, decoding at the access
point/controller may fail due to noise added to the transmitted
signal or fading effects of the wireless channel [20]. We

assume that successful decoding occurs with some known
constant positive probability qii ∈ (0, 1].

The second reason for packet drops is interference due to
other sensors transmitting at the same time slot as sensor i
does. In particular if another sensor j transmits, a collision
occurs on sensor i’s link with some probability qji, leading
to packet i being lost. The values qji are assumed to be
known constants, for simplicity positive qji ∈ (0, 1]. The
case where some sensors do not interfere with each other
is similarly handled – see Remark 3. This collision model
has been recently considered in [18] and subsumes: i) the
conservative case where simultaneous transmissions certainly
lead to collisions (qji = 1) usually considered in control
literature, e.g., [12], [13], ii) the case where simultaneously
transmitted packets are not always lost (qji < 1), e.g., due to
the capture phenomenon [21], and iii) the asymmetric case
where different sensors j, ` interfere differently on link i,
e.g., due to their spatial configuration.

Given that sensor j randomly decides to transmit with
probability αj , the probability that link i is affected by sensor
j equals the product αj qji. To sum up, the combined effect
from all sensors on packet success at link i yields

P(γi,k = 1) = αi qii
∏
j 6=i

[
1− αjqji

]
. (2)

This expression states that the probability of system i in
(1) closing the loop at time k equals the probability that
transmission i is successfully decoded at the receiver, mul-
tiplied by the probability that no other sensor j 6= i is
causing collisions on ith link. The product in this expression
is a consequence of the fact that all sensors independently
decide to access the channel . In (2) the channel parameters
qji, i, j ∈ {1, . . . ,m} are given, and the variables to be
designed are the sensor access rates α.

The random packet success on link i modeled by (2)
causes each control system i in (1) to switch in a random
fashion between the open and closed loop modes of oper-
ation. As a result the access rate vector α to be designed
affects the performance of all control systems. The following
result characterizes, via a Lyapunov-like abstraction, a con-
nection between control performance and the packet success
rate – see our previous work in [7] or [22] for a proof.

Theorem 1 (Control performance abstraction). Consider a
switched linear system i described by (1) with γi,k being
an i.i.d. sequence of Bernoulli random variables, and a
quadratic function Vi(xi) = xTi Pixi, xi ∈ Rni with
a positive definite matrix Pi ∈ Sni

++. Then the function
decreases with an expected rate ρi < 1 at each step, i.e.,
we have

E
[
Vi(xi,k+1)

∣∣xi,k] ≤ ρi Vi(xi,k) + Tr(PiWi) (3)

for all xi,k ∈ Rni , if and only if

P(γi,k = 1) ≥ ci, (4)

where ci ≥ 0 is computed by the semidefinite program

ci = min{θ ≥ 0 : θATc,iPiAc,i+(1− θ)ATo,iPiAo,i � ρiPi}
(5)
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The interpretation of the quadratic function Vi(xi) is
that it acts as a Lyapunov function for the control system,
guaranteeing not only stability but also performance – see
Remark 1. When the loop closes the Lyapunov function of
the system state decreases, while in open loop it increases,
and (3) describes an overall decrease in expectation over the
packet success.

In this paper we assume that quadratic Lyapunov func-
tions Vi(xi) and desired expected decrease rates ρi are
given for each control system. As in our previous work on
centralized scheduling [7], they present a control interface
for communication design over a shared wireless medium.
We aim to design the sensor access rates α so that the
Lyapunov functions for all systems i decrease in expectation
at the desired rates ρi < 1 at any time k. By the above
theorem, these control performance requirements correspond
to necessary and sufficient packet success rates for each link.
Hence we need to ensure that (4) holds for all links i.

Besides control performance, it is desired that the channel
access mechanism makes an efficient use of the sensors’
power resources. We model each sensor i using constant
power pi > 0 when transmitting. We pose then the design
of sensor access rates α that minimize the total expected
power expenditure

∑m
i=1 αi pi subject to the desired control

performance (cf. (2), (3), (4)) for all plants as

minimize
α∈A

m∑
i=1

αipi (6)

subject to ci ≤ αi qii
∏
j 6=i

[
1− αjqji

]
, i ∈ {1, . . . ,m}.

(7)

For technical reasons we restrict attention to access rates α
in a closed subset of the unit cube [0, 1]m of the form

A =

m∏
i=1

Ai, Ai = [αi,min, αi,max]. (8)

This choice does not restrict the feasible set. Intuitively each
sensor i can neither choose αi too close to 0 otherwise it
cannot meet its packet success requirement in (7), nor too
close to 1 otherwise it causes significant packet collisions on
other sensors. We assume that for all α ∈ A the right hand
side of the constraints (7) are strictly positive.

In the following section we proceed to characterize the
optimal access rates α∗, by transforming the original non-
convex problem (6)-(7) into an equivalent convex one. This
way we reveal a simple decoupled structure, and exploit
it later in Section IV to develop an easily implementable
procedure to find these optimal access rates.

Remark 1. In this paper we consider communication design
for control performance, in contrast to the more common
problem of communication designs that guarantee stability,
e.g. [1], [2], [13], [19]. The Lyapunov-like abstraction (3)
provides a characterization of control performance, which
also implies stability. If (3) holds at each time step k, the
second moments of system states decay exponentially with
rate ρi < 1 and remain bounded in the limit [7].

On the technical side, the Lyapunov performance approach
specifies a convex region for the packet success rate in (4),
which is easy to employ in our random access design in
(7). On the contrary, a jump linear system of the form (1)
is (mean square) stable if and only if the spectral radius of
the non-symmetric matrix P(γi = 1)Ac,i ⊗ Ac,i + P(γi =
0)Ao,i⊗Ao,i is less than unity [23]. This is in general a non-
convex specification, hence it is unclear how to best examine
stability in our random access framework.

III. CONTROL-AWARE RANDOM ACCESS DESIGN

In this section we characterize the form of the optimal
sensor access rates according to problem (6)-(7). This is
a non-convex optimization problem because the functions
appearing in the right hand side of the constraints (7) are
not concave. However taking the logarithm at each side of
(7) preserves the feasible set of variables by monotonicity.
The logarithm of the product on the right hand side of (7)
becomes a sum of logarithms, so that we can rewrite the
optimal random access design problem equivalently as

minimize
α∈A

m∑
i=1

αipi (9)

subject to log(ci) ≤ log(αi qii) +
∑
j 6=i

log
(
1− αjqji

)
,

for all i ∈ {1, . . . ,m}. (10)

This equivalent problem is convex in the access rate vari-
ables α, because the logarithm functions appearing in the
constraints are concave. Hence the optimal rates α∗ can be
readily computed using standard convex optimization algo-
rithms [24]. Apart from tractability, the convex reformulation
permits the following theoretical characterization of the form
of the optimal access rates.

Theorem 2 (Optimal control-aware random access). Con-
sider the design of optimal control-aware sensor access
rates in (6)-(7), and suppose that a strictly feasible solution
exists. Then there exists a matrix of non-negative elements
ν∗ ∈ Rm×m+ such that the optimal sensor access rate α∗i for
each sensor i ∈ {1, . . . ,m} can be expressed as

α∗i =

[
ν∗ii

pi +
∑
j 6=i ν

∗
ji

]
Ai

, (11)

where [.]Ai denotes the projection on the set Ai in (8).

This theorem surprisingly states that each sensor can select
its access rate optimally in a simple decoupled way. That is
because α∗i in (11) only depends on parameters pertinent
to system i, e.g., its transmit power pi. In particular it is
independent of what control performances other sensors are
trying to achieve. All the information about the optimal rate
in (11) is encoded in the matrix ν∗, which technically is
the optimal Lagrange multiplier of an appropriately defined
problem. Intuitively ν∗ii can be thought as corresponding to
the control performance requirement of closed loop i, and
similarly ν∗ji to the collision effect that sensor i has on
another closed loop j. The optimal access rate for sensor i in
(11) trades off the requirement on loop i and the collective
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negative effect (
∑
j 6=i ν

∗
ji) on all other control loops j 6= i.

A high transmit power pi also implies that sensor i should
access the channel at a low rate α∗i to limit expenditures.

Proof of Theorem 2. The original problem (6)-(7) is equiv-
alent to the one in (9)-(10). For notational convenience we
denote variables αi by αii for i = 1, . . . ,m. We further
introduce auxiliary variables αji in place of the variables
αj , j 6= i at the right hand side of (10). To force the
new variables αji to behave like αj of the original problem
(αjj in the new notation) we introduce additional constraints
αji ≥ αjj . Overall we formulate the auxiliary convex
optimization problem

minimize
α∈A′

m∑
i=1

αiipi (12)

subject to log(ci) ≤ log(αii qii) +
∑
j 6=i

log
(
1− αjiqji

)
,

for all i ∈ {1, . . . ,m}, (13)
αjj ≤ αji, for all i 6= j ∈ {1, . . . ,m} (14)

for an appropriate set A′ ⊂ [0, 1]m×m so that αji ∈ Aj for
all i, j ∈ {1, . . . ,m}. It is easy to argue that problem (12)-
(14) is equivalent to (9)-(10), i.e., every feasible solution of
one can be converted to a feasible solution of the other with
equal objective.

We define the Lagrange dual problem of (12) by associat-
ing dual variables νii ≥ 0 and νij ≥ 0 with constraints (13),
(14) respectively. The Lagrangian function is defined as

L(α, ν) =

m∑
i=1

αiipi +

m∑
i=1

νii

[
log(ci)− log(αii qii)

−
∑
j 6=i

log(1− αjiqji)
]
+

m∑
i=1

∑
j 6=i

νij

[
αjj − αji

]
. (15)

By a rearrangement of the terms we get a form decoupled
among primal variables,

L(α, ν) =

m∑
i=1

{[
(pi +

∑
j 6=i

νji)αii − νii log(αii qii)
]
+

∑
j 6=i

[
− νii log(1− αjiqji)− νijαji

]
+ νii log(ci)

}
. (16)

Strict feasibility of (6)-(7) implies strict feasibility for the
convex problem (12)-(14), hence strong duality holds [24,
Prop. 6.4.3]. The optimal primal α∗ is a minimizer of the
Lagrangian at the optimal dual point ν∗. Noting that the
Lagrangian (16) is strictly convex in α, the minimizer α∗

is unique and satisfies the first order condition ∂L
∂α (α, ν

∗) =
0, subject to the box constraints αji ∈ Aj for all i, j ∈
{1, . . . ,m}. By the decoupled Lagrangian in (16) we get

∂L

∂αji
(α, ν) =

{
(pi +

∑
j 6=i νji)− νii/αi if i = j

νiiqji/(1− αjiqji)− νij if i 6= j.
(17)

This directly verifies the form of optimal α∗i in (11).

The decoupled structure of the optimal sensor access rates
according to Theorem 2 relies on knowing the values ν∗.

In the following section we develop a distributed iterative
procedure, easily implementable in the architecture of Fig. 1,
to obtain the desired ν∗.

Remark 2. The fact that the optimal sensor access rates
can be decoupled among systems according to Theorem 2
is in accordance with known results for general random
access communication networks [15]–[18]. The technical
development in these works is similar to our optimization
problem (6)-(7). The context differs however, since in general
wireless networks the quantity of interest is the achieved
throughput rates, fairness, or general utility functions, in
contrast to the packet success rates used for closed loop
control performance here. It is also worth noting that even
though our collision model is also considered in [18], the
exact decoupled form of Theorem 2 in (11) is novel.

IV. IMPLEMENTATION OF CONTROL-AWARE RANDOM
ACCESS

We develop an iterative algorithm to determine the values
ν∗ which, according to Theorem 2, can be used by the
sensors to select optimal channel access rates α∗. The
algorithm is distributed and easily implementable in the sense
that the common access point is responsible for maintaining
tentative values ν which are sent to the sensors via the reverse
channel in order for them to select appropriate access rates.

The steps of the iterative procedure are shown in Al-
gorithm 1. At each iteration t, the access point/controller
of Fig. 1 keeps a matrix of variables ν(t) and sends to
each sensor i via the reverse channel the values νii(t) and∑
j 6=i νji(t). The latter then selects its access rate αi(t) in

(18) as if the received values correspond to the optimal ones
ν∗ (cf. (11)). Then the access point updates the matrix to
ν(t+ 1) to prepare for the next iteration.

Given the interpretation of ν(t) as Lagrange dual variables
of the auxiliary problem (12)-(14), the update step in (22)
is a step towards a subgradient direction s(t) ∈ Rm×m of
the dual function. This procedure converges to the optimal
sensor access rates α∗ as stated next.

Theorem 3 (Sensor access rates optimization). Consider the
design of optimal control-aware sensor access rates in (6)-
(7), and suppose that a strictly feasible solution exists. The
iterations of Algorithm 1 with the stepsize in (22) satisfying∑
t≥1 ε(t)

2 < ∞,
∑
t≥1 ε(t) = ∞, converge to the optimal

access rates, i.e., αi(t)→ α∗i for all i = 1, . . . ,m.

Proof. The variables αi(t), αji(t) computed by Algorithm 1
in (18)-(19) are minimizers of the Lagrangian of the auxiliary
problem (12)-(14) at the point µ(t) (cf.(17)). The matrix
s(t) computed by (20)-(21) corresponds to the slack of these
minimizers in the auxiliary problem, hence is a subgradient
of the dual function at µ(t) [24, Ch. 8.1]. Moreover the
subgradient s(t) is bounded due to the restriction α(t) ∈ A′
(cf.(8)), i.e., the logarithms in (20) are finite. Hence by
subgradient optimization arguments [24, Prop. 8.2.6] for the
selected stepsizes the dual variables ν(t) converge to the
optimal ν∗. The variables α(t) also converge to the optimal
sensor access rates α∗ by continuity of (11).
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Algorithm 1 Distributed random access implementation

1: Initialize ν(0) ∈ Rm×m+ at the access point/controller,
t← 0

2: loop At period t
3: The access point/controller sends to each sensor i the

values νii(t),
∑
j 6=i νji(t).

4: Each sensor i computes

αi(t)←

[
νii(t)

pi +
∑
j 6=i νji(t)

]
Ai

(18)

and for the rest of the period t it accesses the channel
with rate αi(t).

5: The access point/controller measures the access rates
αi(t) selected by all sensors i = 1, . . . ,m during the
period and computes the auxiliary variables

αji(t)←
[
1

qji
− νii(t)

νij(t)

]
Aj

for all j 6= i, (19)

and the matrix s(t) ∈ Rm×m with diagonal elements

sii(t)← log(ci)−log(αi(t) qii)−
∑
j 6=i

log
(
1−αji(t)qji

)
(20)

for all i ∈ {1, . . . ,m}, and offdiagonal elements

sij(t)← αj(t)− αji(t) (21)

for all i, j ∈ {1, . . . ,m}, i 6= j.
6: The access point/controller computes the new matrix

ν(t+ 1)←
[
ν(t) + ε(t) s(t)

]
+

(22)

where [ ]+ denotes the elementwise projection to the
non-negatives Rm×m+ .

7: end loop

Apart from converging to the optimal operating point,
Algorithm 1 is easily implementable in the wireless control
architecture of Fig. 1. The sensors decide upon their access
rates without coordination among themselves. Moreover they
do not need to know global problem information, e.g.,
the specifications of the other coexisting control loops, or
even how many other sensors are sharing the same wireless
medium. Each sensor only needs to know the amount of
collisions it causes on all other sensors collectively (captured
by the value of the sum

∑
j 6=i νji(t) in (18)).

The access point/controller on the other hand needs to
know the packet success rates ci required for control perfor-
mance of each control loop i (cf. Theorem 1), as well as the
channel collision pattern described by the values qji. At every
iteration of the algorithm the access point additionally needs
to know the sensor access rates α(t) selected by the sensors
during this iteration, which can be either (i) computed since
the access point knows all dual variables, or (ii) estimated
using the empirical packet receptions, or (iii) sent by the
sensors to the access point within the transmitted packets.
Simulations of the algorithm are presented in the following
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Fig. 2. Evolution of dual variables during the optimization algorithm. The
elements of the matrix ν(t) converge to the optimal values ν∗ required to
obtain the optimal sensor access rates.

Fig. 3. Sensor access rates for the numerical example in Section V.
The feasible set of sensor access rates that meet the control performance
requirements of the two control systems is shown in shaded. After few
iterations the access rates α(t) selected by the optimization algorithm
converge close to the feasible point with the lowest utilization.

section.

Remark 3. Our formulation can be modified for cases where
some sensors do not interfere with others (qji = 0). Define
the subset of sensors that cause collisions on link i as
Ii = {j 6= i : qji > 0}, and conversely the subset of
links that are affected by sensor i as Oi = {j 6= i : qij >
0}. The packet success probability in (2) is modified to
include only interfering sensors

∏
j∈Ii . Similarly the optimal

sensor access rates in (11) are modified to include the sum∑
j∈Oi

ν∗ji. Also in Algorithm 1 no ’coupling’ variables
αji, νij are needed when j /∈ Ii.

V. NUMERICAL SIMULATIONS

We present a numerical example of the random access
design. As in Fig. 1 we consider m = 2 identical scalar
control systems of the form (1), with open (unstable) and
closed (stable) loop dynamics Ao,i = 1.1, Ac,i = 0.4
respectively. The two respective wireless sensors transmit to
the access point/controller over a shared channel with success
and collision parameters[

q11 q12
q21 q22

]
=

[
0.95 0.6
0.6 0.95

]
(23)
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i.e., in isolation 5% of the messages are dropped, and
collisions happen with probability 60% in simultaneous
transmissions. The transmit powers are taken equal pi = 1.
The systems and the channel are symmetric, but we model an
asymmetric control performance requirement. A Lyapunov
function Vi(x) = x2 for each plant state is required to
decrease with expected rates ρ1 = 0.75 and ρ2 = 0.95
respectively (cf. (3)). System 1 is more demanding, also
shown by the required packet success rates c1 ≈ 0.44,
c2 ≈ 0.25 of the two sensors, computed via (5).

We solve the random access design problem (6)-(7) by
Algorithm 1, which as explained in Section IV solves the
problem in the dual domain. The dual variables ν(t) of the
algorithm converge as shown in Fig. 2. We also plot the
evolution of the sensor access rates α(t) during the algorithm
in Fig. 3, along with the set of all access rates that are feasible
with respect to the control performance requirements (7). We
observe that the sensor rate iterates α(t) start from infeasible
values, and moves towards the extreme point of the feasible
set with the lowest access rates, so that the power expenditure
in (6) is minimized. In fact after only a few iterations of the
algorithm the sensor access rates are very close to the optimal
point, which is

α∗1 ≈ 0.61, α∗2 ≈ 0.41. (24)

As expected, sensor 1 is accessing the shared channel at
a higher rate than sensor 2 in order to achieve the more
demanding control performance requirement of system 1.
Moreover, both sensors access the channel at a rate higher
than the necessary packet success rates, i.e., α∗i > ci. This
happens because the sensors need to counteract the effect of
packet collisions, as well as packet drops due to decoding
errors. In comparison to an ideal channel without collisions
(but with packet drops) where each sensor would access the
channel at rates ci/qii, the increase in channel access is 47%
for sensor 1, and 75% for sensor 2.

VI. CONCLUDING REMARKS

We design a random access mechanism for sensors trans-
mitting measurements of multiple plants over a shared wire-
less channel to a controller. The goal is to mitigate the
effect of packet collisions from simultaneous transmissions
and guarantee control performance for all control systems.
Via a Lyapunov function abstraction, control performance is
converted to required packet success rates of each closed
loop. We show that the optimal rates at which sensors
should transmit are decoupled among systems, and develop
a distributed procedure to obtain them.

A caveat of the procedure is the required informa-
tion exchange between sensors and the common access
point/controller, introducing communication overhead. We
have recently addressed this issue in [22] by a decentralized
mechanism that does not require an access point. Future
work includes the design of mechanisms able to adapt
to, e.g. changes in the channel collision pattern and the
control performance requirements, or to the admission of
new control loops in the architecture. Future research also
includes decentralized adaptation to plant states similar to,

e.g., the scheduling in [5], the single link case in [20], or the
remote estimation in [14].
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