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T
his article reviews and presents various solved and 
open problems in the development, analysis, and 
control of epidemic models. The proper model-
ing and analysis of spreading processes has been a 
long-standing area of research among many differ-

ent fields, including mathematical biology, physics, computer 
science, engineering, economics, and the social sciences. One 
of the earliest epidemic models conceived was by Daniel Ber-
noulli in 1760, which was motivated by studying the spread 
of smallpox [1]. In addition to Bernoulli, there were many dif-
ferent researchers also working on mathematical epidemic 
models around this time [2]. These initial models were quite 
simplistic, and the further development and study of such 
models dates back to the 1900s [3]–[6], where still-simple mod-
els were studied to provide insight into how various diseases 
can spread through a population. In recent years, there has 
been a resurgence of interest in these problems as the concept 
of “networks” becomes increasingly prevalent in modeling 
many different aspects of the world today. A more compre-
hensive review of the history of mathematical epidemiology 
can be found in [7] and [8].

Despite the study of epidemic models having spanned 
such a long period of time, it is only recently that control engi-
neers have begun to study them. Consequently, there is 
already a vast body of work dedicated to the development and 
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analysis of epidemic models, but far fewer works that pro-
vide proper insight and machinery on how to effectively 
control these processes. The focus of this article is to pro-
vide an introductory tutorial on the latter for new engi-
neers looking to enter the field of spreading processes on 
complex networks. Furthermore, this article details some 
classical and recent results in the literature while also iden-
tifying numerous open problems that can benefit from the 
collective knowledge of optimization and control theorists.

Although this article focuses on the context of epidem-
ics, the same models and tools presented are directly appli-
cable to many different spreading processes on complex 
networks. Examples include the adoption of an idea or 
rumor through a social network like Twitter, the consump-
tion of a new product in a marketplace, the risk of receiving 
a computer virus through the World Wide Web, and, of 
course, the spreading of a disease through a population 
[9]–[11]. For this reason, the terms individuals, people, 
nodes, and agents may be used interchangeably through-
out this article.

This article begins by introducing and analyzing some 
classical stochastic epidemic models and their connections 
to their deterministic approximations. These models and 
their analysis are then extended to consider arbitrary net-
work topologies. After providing a basic understanding of 

how spreading processes evolve, this article formulates 
various control problems for which some demonstrative 

solutions are presented.
In particular, three main categories of control 

problems are discussed. The first category is 
called spectral control and optimization, where a 
fixed number of resources must be optimally 
allocated among a population to best mitigate 
the effects of an undesired disease. The 
second category is optimal control, where opti-
mal feedback control strategies are sought 
out, usually in the sense of balancing some 
control costs against performance. Unfortu-
nately, there has not yet been much work 
done in this second category for arbitrary net-
works. Consequently, the third category is heu-

ristic feedback control, where the model and 
feedback control strategies are codeveloped to 

yield a single closed-loop system of the model, 
whose stability properties can then be studied.

After describing the main shortcomings in the cur-
rent literature for controlling epidemics and highlight-

ing some recent preliminary works that are aimed at 
improving the current state of the art, this article closes by 
providing some insight into the current research challenges 
that need to be addressed to fully harness the power of these 
works and make a real societal impact.

Deterministic and stochastic models in the context  

of both population and networked dynamics  

have been presented and analyzed. 
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MOdELING ANd ANALYSIS Of EpIdEMICS
Before jumping into the class of models studied here, note 
that there are many ways to model spreading processes. 
The underlying common factor that ties almost all epi-
demic models together is the existence of “compartments” 
into which individuals in a population are divided. The 
two most common compartments that exist in essentially 
every epidemic model are susceptible (S) and infected (I) 
[6], [7], [12]. In models that contain only these two compart-
ments, a given population is initially divided into them. S 
represents individuals who are healthy but susceptible to 
becoming infected, and I represents individuals who are 
infected but are able to recover. From this basic compart-
mentalization, there are numerous ways that interactions 
within the population can be modeled.

The main focus of this article is on agent-based models, 
where individuals can randomly move from one compart-
ment to another with some defined rates rather than deter-
ministically, since stochastic models can better capture the 
dynamics of a spreading disease, such as influenza. For 
example, although an individual is more likely to become 
infected when surrounded by many infected individuals, it 
is not a guarantee.

Considering the simplest two-compartment model, 
healthy individuals can randomly transition from S to I 
with some infection rate that is a result of interactions with 
infected individuals. Similarly, infected individuals can 
randomly transition from I to S with some recovery rate 
that is a result of recovering from the infection. More 
details on how these rates are defined are provided later. 
Figure 1 shows the simple interaction described above.

In addition to models with only two compartments, 
there are also other epidemic models aimed at capturing 
more features of realistic diseases and spreading processes. 
Capturing more features of a particular disease or process 
is often done by adding more compartments, such as a 
removed (R) compartment representing individuals who 
are no longer susceptible to the infection. This compart-
ment might refer to a deceased, vaccinated, or immune 
individual. For instance, this additional compartment may 
be helpful in modeling a disease like chicken pox, where an 

individual gains immunity after having recovered from 
the disease the first time. Other compartments have also 
been considered in the literature to study the effect of, for 
example, an incubation period, partial immunity, or quar-
antine in the spreading dynamics [13]–[19].

For brevity, this section focuses on two of the oldest epi-
demic models, known as the susceptible-infected-removed 
(SIR) and the susceptible-infected-susceptible (SIS) models 
[6]. Let N be the total number of individuals in a popula-
tion. The state of node , ,i N1 f! " , at time t  is denoted by 

( ) { , , } .X t S I Ri !  The state of the entire population is col-
lected in a state vector ( ) ( ( ), , ( )) .X t X t X tN

T
1 f=  The evolu-

tion of the states is then described by a Markov process as 
follows. A node i  infected at time t  recovers at a fixed rate 

.0>id  In other words, if node i  is infected at time ,t  the 
probability that this node loses its infection in the time slot 
( , ]t t tD+  for small tD  is given by ( ) .t o tid D D+  Depending 
on which model is used, this recovery rate describes the 
transition out of the infected state by

 ( ) ( ) ( ), (SIR)Pr X t t R X t I t o ti i idD D D� � � ��� �  

 ( ) ( ) ( ) . (SIS)Pr X t t S X t I t o ti i idD D D� � � ��� �  

The above represents an endogenous transition, which 
occurs internally within each node, independent of the 
states of other nodes [20].

Similarly, an individual i  that is susceptible at time t  
becomes infected at a rate eff

i�  that depends on the state of 
the entire population ( ) .X t  This transition is known as 
exogenous because it is influenced by factors external to the 
node itself. These transitions are discussed at length in the 
sections to come. Figure 2 shows the simple interaction 
described above for the SIR model.

remark 1: Other Spreading Models
This article excludes chain binomial models (such as the 
Reed–Frost model [8], [21]) and other similar types of 
models from percolation theory. Depending on the appli-
cation at hand, the model for the spreading dynamics can 
vary. The main difference between the models consid-
ered here and ones like the Reed–Frost model is that this 
article focuses on models that allow infected individuals 
to continuously try to infect healthy ones. In the Reed–
Frost model, an infected person only has one chance of 

figure 2  a three-state susceptible-infected-removed model. an 
individual i  in the susceptible state S  can transition to the infected 
state I  with some infection rate eff

i�  and from the infected state I  to 
the removed state R  with some recovery rate .id

S

�i
eff

�i

I R

S I

Recovery Rate

Infection Rate

figure 1  a two-state susceptible-infected-susceptible model. an 
individual in the infected state I  transitions to the healthy or sus-
ceptible state S  with some recovery rate and from the susceptible 
state to the infected state with some infection rate.
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infecting a healthy person. However, when thinking of a 
virus like the flu, a healthy person is continuously in 
danger of becoming sick when in contact with an infected 
individual, rather than a one-time chance. Conversely, 
the Reed–Frost model might be more suitable for model-
ing the spreading of an e-mail virus rather than an infec-
tious biological disease, where a recipient might only 
decide one time whether or not to open the e-mail; see [8] 
and [21] for further details.

The study of chain binomial models and related prob-
lems is indeed an active area of research that draws more 
from results in computer science rather than the control-
theoretic approaches taken in this article. Many works 
exist along this line on forecasting the cascading effects 
of a single infection or failure on a network [22], [23] and 
how they can be mitigated through vaccination [24]. On 
the other hand, it may be of interest to find the most 
influential nodes or to determine where to start an infec-
tion in a network to reach as many people as possible 
[25], [26]; this problem is often referred to as a seeding 
problem. Further extensions study attack and vaccina-
tion strategies on these models [27], and even cases in 
which there are multiple contagions on multiple net-
works [28].

Classical Models
Based on the above discussion, the dynamics of the SIR 
model is described by a 3N-dimensional Markov process. 
The exponential size of the state space makes this model 
hard to analyze. One standard method to simplify the 
analysis is to consider the evolution of the total number 
of healthy and infected individuals rather than the state 
of each individual separately. These dynamics are com-
monly referred to as population dynamics [29], [30]. Fur-
thermore, the recovery and infection rates are often 
assumed to be the same for all individuals; that is, id d=  
and ,eff eff

i� �=  for all .i  Standard population dynamics 
assume a well-mixed population, which means all individ-
uals affect and are affected by all other individuals 
equally. Figure 3 shows the described interactions of this 
well-mixed population.

Stochastic Population Models
The SIR population model is described as follows. Let-
ting ( ), ( ) { , , , }N t N t N0 1I R f!  be the number of infected 
and removed individuals at some time ,t  respectively, 
the number of susceptible individuals is necessarily 
given by ( ) ( ) ( ) .N t N N t N tS I R= - -  A common choice for 
the infection rate is given by N Neff I S� �=  [7], [31], [32] for 
some ,02�  known as the mass-action law. In other 
words, the rate at which the total number of susceptible 
individuals becomes infected is proportional to the 
product of the number of susceptible and infected indi-
viduals in the population. The state at some time t tD+  
is then given by

 ( , )
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For the SIS model, there are no individuals in the removed 
state, forcing N 0R =  at all times, which simplifies the 
dynamics to
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Removing the explicit definition of time, the SIS process 
can then be seen as a random walk on a line for N 0>1  
[32]–[35] (a similar Markov chain can be described for the 
SIR model)

 with probability
( )
( )

,N N
N N
N N

1I I
I

I

"
� �

�
+

- +

-
 

 with probability
( )

.N N
N N

1I I
I"

� �
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- +

 (3)

An important observation about (3) is that it is a Markov 
chain with a single absorbing state N 0I =  in which all 
agents are healthy. In other words, once the entire popula-
tion is healthy, the infection cannot suddenly reemerge. It is 
known from the theory of Markov chains that, given 
enough time, the infection will eventually die out with 
probability one (see [36] for a review of Markov chains and 
relevant properties). Thus, the study of these systems is 
often interested in answering the question of when or how 
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figure 3 Population dynamics of the two-state susceptible-
infected-susceptible model. These models assume a well-mixed 
population, meaning that each individual in the population is 
equally likely to contract a disease from anyone else in the popula-
tion. an infected individual (red) naturally recovers at a rate ,02d  
depicted by the red cross. a healthy individual (green) is affected 
by each infected individual in the population with rate ,�  depicted 
by the red arrows.



30 IEEE CONTROL SYSTEMS MAGAZINE » february 2016

quickly the infection will die out. This question is revisited 
in Remark 3.

To further simplify the problem, various works often 
consider a deterministic approximation of these stochastic 
dynamics. In fact, the simpler deterministic dynamics 
introduced next predate the introduction of the stochastic 
model above [6].

Deterministic Population Models
The models presented next are perhaps the two most stud-
ied epidemic models in the literature and are covered in a 
large number of books [6], [8], [10]–[12], [37]–[44]. These 
books also discuss a variety of extensions, including more 
complicated disease models that have more than two 
states, consider birth and mortality rates, allow for differ-
ent types of infection rates, and different categories for 
each disease state, for example, based on age or gender. 
Only the most basic models are presented here to help sim-
plify the discussion.

Assuming a large population size ,N  define /p N NI I=  
and /p N N N NS I R= - -� �  as the fractions of infected and 
susceptible individuals, respectively. Then, the determinis-
tic SIR version of (1) can be written as

 ,p p pS I S�= -o  

 ,p p p pI I S I� �= -o  (4)

and the deterministic SIS version of (2) as

 ,p p p pS I S I� �= - +o  

 .p p p pI I S I� �= -o  (5)

These are derived by leveraging Kurtz’s theorem while 
assuming N  to be very large [43]. Kurtz’s theorem is essen-
tially a law of large numbers for a Markov process that says 
as N  approaches its thermodynamic limit, the determinis-
tic and stochastic systems behave similarly.

Consider the deterministic SIS model (5). Because 
N 0R =  and the population size N  is fixed, p p1S I= -  and 
(5) are redundant and can be simplified to

 ( ) .p p p p1I I I I� �= - -o  (6)

Given an initial condition ( ),p 0I  the solutions of (6) can be 
analytically solved [8], [45], [46] (note that the SIR model can 
also be solved analytically). The solution of the SIS model is
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Given the exact solution of ( ),p tI  the following result char-
acterizes its equilibrium points.

Theorem 2: Solutions to Deterministic Population Model 
The solution of ( )p tI  approaches /1 d b-  as t " 3  for 

,2� �  and 0 as t " 3  for .#� �

remark 3: Deterministic Versus Stochastic  
Population Models 
Note that the deterministic models are only approxima-
tions of the stochastic models. A natural question is then to 
see what the threshold result of Theorem 2 can tell us about 
the original stochastic model (3). The first thing to note is 
that in the stochastic model, given enough time, the system 
will reach the disease-free state with probability one. How-
ever, Theorem 2 shows that for ,2� �  the deterministic 
model will converge to an endemic equilibrium, meaning 
the disease never dies out. Thus, rather than studying the 
equilibrium values of the two models, the authors in [35], 
[45], and [47] look at the expected time [ ]E T  for the stochas-
tic model to reach the disease-free equilibrium. Interest-
ingly, they are able to show that for ,1� �  the expected 

Graph Theory

A graph, a mathematical description of a given network, consists 

of distinct nodes, or vertices, and links between the nodes, or 

edges, that describe the interactions between the nodes. In the 

context of epidemics, the meaning of a single node depends on 

the granularity of the considered model. for example, a node at 

the lowest level can represent a single person and links to other 

nodes can represent the interactions this person has with others. 

On a much higher level, a single node can represent an entire city 

of people, and links to other nodes can represent the interactions 

this city has with others, for example, traffic flow between cities. 

See “Metapopulation Models” for further details.

formally, a directed graph ( , )V EG =  is a pair consisting of 

a set of N  vertices V  and an ordered set of edges .E V V#1  

The adjacency matrix A RN N
0! #
$  of G  satisfies a 1ij =  if and only 

if ( , ) .v v Ei j !  edges are directed, meaning that they are travers-

able in one direction only. The sets of in-neighbors and out-
neighbors of v V!  are, respectively

( ) | ( , ) ,

( ) | ( , ) .

v v V v v E
v v V v v E

N

N

in

out

! !

! !

=

=

� �

� �

"

"

,

,

a graph is undirected if for all ,a 1ij =  it is also true that 

.a 1ji =  In this case, the set of in-neighbors and out-neighbors 

for each node are identical.

a directed path P, or in short path, is an ordered sequence 

of vertices such that any two consecutive vertices in P form an 

edge in E. a graph G  is strongly connected if, for all vertices 

,v V!  there exists a path to all other vertices .v V!�
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time [ ]E T  is upper-bounded by / .N� �  In this case, the dis-
ease is said to die out “quickly.” On the other hand, when 

,2� �  the expected time [ ]E T  grows exponentially with .N
The analysis of the deterministic model results in a 

precise threshold result that translates directly to the sto-
chastic model as discussed in Remark 3. Threshold condi-
tions are often given in terms of a reproduction number ,R0  
which is the expected number of individuals a single in-
fected individual will infect [7], [48] over the course of its 
infection period. In other words, given a fully healthy 
population, if a person i  is randomly infected, R0  is the 
expected number of other individuals who will become 
infected over the course of person i’s infection. The repro-
duction number is a useful metric with a critical value of 

.R 10 =  When R 10 1  the disease does not spread quickly 
enough, resulting in a decay in the number of infected in-
dividuals (in expectation). On the other hand, when 
R 10 2  the infected population grows over time (in expec-
tation) [10]. In the simple model considered above, the re-
production number is given by / .� �  Furthermore, the 
exact solutions and asymptotic behavior of the system can 
be found analytically.

The reproduction number is an important parameter 
that epidemiologists are interested in identifying for var-
ious diseases and environments [49] because it is a single 
number that can predict whether a certain outbreak of a 
disease will become an epidemic or die out on its own. 
Of course, the problem is that computing R0  for a par-
ticular disease is not trivial because there is no database 
for things like infection rates and recovery rates for vari-
ous diseases.

The main drawback of these population models is that 
they are crude models derived by making many simplify-
ing assumptions including i) a homogeneous incidence 
rate eff�  and recovery rate d  for all individuals, ii) a low 
number of states, iii) a constant population size, and iv) a 
well-mixed population (or a contact network that is a com-
plete graph). Particularly in the context of diseases spread-
ing in a population, these simplifying assumptions might 
be a limiting factor in properly modeling the dynamics. 
For instance, homogeneous incidence rates and a well-
mixed population assume everyone in the population 
equally affects and is equally affected by everybody else. 
However, it is more reasonable to think that a person is 
much more likely to contract a disease from an infected 
family member rather than an infected stranger. These 
drawbacks were evident when scientists attempted to esti-
mate the reproduction number of SARS in China in 2002–
2003 but grossly overestimated it. This incorrect estimation 
of R0  then led to SARS scares making global headlines, 
which eventually fizzled out because the actual reproduc-
tion number was far lower than estimated due to the crude 
population models. More details on how this error 
occurred can be found in [50], but the upshot is that more 
refined models are needed.

Network Models
To create more refined epidemic models, it is clear that the 
entire population cannot just be lumped into two compart-
ments defined by a single number. Ideally, the model would 
be able to account for the states of all N  individuals indepen-
dently and allow for arbitrary interactions among them. Not 
surprisingly, analyzing these models is not a trivial task.

This section focuses on spreading processes on a given, 
arbitrary topology. Before jumping into the models of inter-
est, it should be noted that there is a body of work dedi-
cated to extending the population models to network 
models with simple topologies. More specifically, before 
jumping to completely arbitrary networks, there are many 
works that study various, specific structures. For instance, 
some works study how a disease spreads on a two-dimen-
sional lattice or star graph [51]–[53]. Others consider more 
complex interconnection patterns, such as power-law and 
small-world networks, which still have some exploitable 
structure [54], [55]. In this context, a common method to 
analyze these networks is to assume that nodes are infected 
at a rate proportional to the number of neighbors they have 
[56]–[61]. These methods are justified depending on the 
assumptions enforced on the network topology. A review 
of these types of models can be found in [62]. The following 
instead focuses on epidemiological models on arbitrary 
network topologies.

Stochastic Network Models
This section studies an SIS epidemic model described as a 
continuous-time networked Markov process. Consider a 
network of N  nodes represented by a connected, undi-
rected graph ( , )V EG =  where V  is the set of nodes and 
E V V#1  is the set of edges. The adjacency matrix 
A RN N

0! #
$  of the graph is defined component-wise as 

a 1ij =  if node i  can be directly affected by node ,j  and 
a 0ij =  otherwise. See “Graph Theory” for further details.

Let ( )X ti  denote the state of node i  at time ,t  where 
( )X t 1i =  indicates that i  is infected and ( )X t 0i =  indicates 

that i  is healthy at time .t  Infected nodes can transmit the 
disease to their neighbors in the graph G  with rate .02�  
Simultaneously, infected nodes recover from the disease 
with rate .02d  Figure 4 shows the described interactions 
on an arbitrary network. The SIS spreading process can 
then be modeled using the Markov process

 
:

:

with rate ,

with rate .
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(7)

Notice that there exists one absorbing state in this Markov 
process (corresponding to the disease-free equilibrium) that 
can be reached from any state ( ) [ ( ), , ( )] .X t X t X tN

T
1 f=  

This absorbing state implies that, regardless of the initial 
condition ( ),X 0  the epidemic eventually dies out in finite 
time with probability one. A useful measure of the virality 
of a spreading process is then the expected time [ ]E T  it takes 
for the epidemic to die out. In [55] and [63], the following 
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threshold conditions are provided in terms of the infection 
strength / .x b d=

Theorem 4: Threshold for Sublinear  
expected Time to extinction
If /( ( )),A1 max1x m  where ( )Amaxm  is the maximum real 
eigenvalue of A, then

 [ ]
( )

,
log

E T
A

N 1
max

#
d bm-

+
 

for any initial condition ( ) .X 0
Note that Theorem 4 only provides a sufficient condition 

for “fast” extinction of a disease. Despite many efforts to 
determine whether this condition is also necessary, it remains 
an open question on general graphs at the time of writing. 
The works [43], [64], and [65] show that there exists some crit-
ical value cx  of the infection strength for which the expected 
time to extinction grows exponentially with N  when .c$x x  
The following result formalizes this statement and provides 
a lower bound on the critical values [66], [67]; however, it is 
noted that stronger statements exist when considering graphs 
with a fixed structure (such as a lattice or star) [43].

Theorem 5: Threshold for exponential  
expected Time to extinction
There exists

 
( )A
1

max
c $x
m

 

such that, for ,c2x x  the expected time to extinction 
[ ] ,E T O ekN= � �  where k  depends on x  and the structure of 

the graph .G
The maximum eigenvalue ( )Amaxm  of an adjacency 

matrix is a parameter that captures how “tightly con-
nected” the graph is. More connections usually mean a 
larger ( ) .Amaxm  Intuitively, the results of Theorems 4 and 5 

are saying that the more tightly connected the graph is, the 
easier it is for a disease to spread.

Note that although the result of Theorem 4 provides an 
upper bound on the expectation of the extinction time, the 
possibility of a persisting epidemic is not ruled out. For 
example, it has been shown for star graphs that, regardless 
of the infection strength ,x  there is a positive probability 
that the time to extinction is superpolynomial in the 
number of nodes [54], [55], [68]. Furthermore, for high-
degree or scale-free networks (such as preferential attach-
ment [54] or power-law configuration model graphs [55]), it 
has been shown that this threshold goes to zero as the 
number of nodes increases [69] because the maximum 
eigenvalue grows unbounded with .N

Deterministic Network Models
This section presents the deterministic version of the SIS 
dynamics over arbitrary networks [20], [70]–[74]. For now, 
assume homogeneous recovery and infection rates; this 
assumption will be relaxed in the following section. The 
natural recovery rate of each node is given by ,0>d  and 
the infection rate at which a node is affected by infected 
neighboring nodes is .02�  The dynamics of the spread 
are described by the set of ordinary differential equations

 ( ),p p a p p1i i ij
j

N

j i
1

d b= - + -
=

o �  (8)

where ( ) [ , ]p t 0 1i !  describes the (approximated) probabil-
ity that an individual i  is infected at time .t  See “Net-
worked Mean-Field Approximations” for further details. 
This variable has another interesting interpretation in the 
context of metapopulation models. In a metapopulation 
model, each node does not represent an individual, but a 
large subpopulation (such as an entire district or city). In 
this context, pi  can be interpreted as the fraction of the ith 
subpopulation that is infected. See “Metapopulation 
Models” for further details.

As with all other epidemic models, the disease-free 
equilibrium p 0i =  for all , ,i N1 f! " , is a trivial equilib-
rium of the dynamics. The stability properties of this equi-
librium are discussed next. Letting ( , , )p p pN T

1 f=  and 
recalling the infection strength / ,x b d=  the following 
result from [74]–[77] characterizes the convergence proper-
ties of these dynamics.

Theorem 6: Threshold Condition for Networks 
Given the dynamics (8) for any ( ) ,p 0 0!  the equilibrium 
p 0=)  is globally asymptotically stable if and only if 

/ ( ) .A1 max#x m  Furthermore, for / ( ),A1> maxx m  there exists 
p R( , )

N
0 1!))  such that p))  is globally asymptotically stable.

remark 7: Deterministic Versus  
Stochastic Network Models 
Similar to the discussion in Remark 3, there is a connection 
between the deterministic result in Theorem 6 and the  

d

b

b

Xi

figure 4 The network dynamics of the two-state susceptible-
infected-susceptible model. a node i  has a natural recovery rate 

,d  depicted by the red cross, at which it transitions from the infected 
state I  to the susceptible state S  and is affected by each infected 
neighbor j  with rate ,�  depicted by the orange arrows.
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stochastic result in Theorem 4. Since X 0=  is an absorbing 
state, the stochastic dynamics will eventually reach the dis-
ease-free state with probability one. However, Theorem  6 
claims that for ( )Amax 2bm d  the deterministic model will 
converge to an endemic equilibrium, meaning the disease 
never dies out. To resolve this apparent contradiction, recall 
the expected time [ ]E T  for the stochastic model to reach the 
disease-free equilibrium. Remarkably, Theorem 4 provides 
a sufficient condition for a disease to quickly die out that is 
in agreement with the threshold result of Theorem 6. How-
ever, as suggested by Theorem 5, it has not yet been shown 
whether the same threshold condition holds for persistence 
of the disease in the stochastic network model.

A major drawback of (8) is that it assumes a constant 
infection rate �  and recovery rate d  for all individuals. 
More refined models allow different recovery rates for each 

person and different infection rates for each type of con-
tact, which allows for a more general model that can cap-
ture more realistic scenarios. For instance, it is not realistic 
to assume that everyone an individual comes in contact 
with has an equal chance to infect him or her. A family 
member or a spouse is much more likely to infect him or 
her than a stranger or even a casual acquaintance. To cap-
ture these heterogeneous effects in real populations, het-
erogeneous network models are developed next.

Heterogeneous Network Models
This section considers the dynamics of the SIS model with 
heterogeneous recovery and infection rates over arbitrary 
strongly connected directed graphs ( , ) .V EG =  The recov-
ery rate of node i  is given by .0i 2d  The infection rates are 
instead considered to be edge dependent. In other words, 

Metapopulation Models

T his article often refers to “individuals” and the state of “all in-

dividuals” in a network. However, especially in the context of 

diseases spreading through populations, the number of individuals 

N in a given network can be quite large. Instead of considering the 

entire population of interest together, metapopulation models allow 

groups of individuals to be lumped together into subpopulations 

under some assumptions.

Consider the heterogeneous network SIS dynamics (9). This 

model is originally introduced in this article with pi  referring to 

the probability that an individual i  is infected (see “Networked 

Mean-field approximations” for further details). However, this 

model means an N-dimensional system must be analyzed to 

properly study how this model evolves, which can be difficult 

for large .N
Instead of studying the state of each individual in the popu-

lation separately, M N%  subpopulations can be created to ap-

proximate the dynamics of the entire N -dimensional system. 

This reduction was originally done and analyzed for M 2=  and 

turned out to be easily extendable [S1].

Let , ,i M1 f! " ,  denote the ith subpopulation with ni  indi-

viduals, where each individual from the original population with 

N  people is assigned to exactly one subpopulation. In other 

words, the total population is still fixed at .n Njj

M

1
=

=
�  Note that 

the number of individuals in each subpopulation do not need to 

be the same.

The dynamics of the metapopulation model is then defined 

assuming that each subpopulation i is well mixed and has a 

homogeneous recovery rate .id�  In other words, within each 

subpopulation ,i  each individual is assumed to have equal con-

tact with everyone else. This method is the same way the de-

terministic SIS population dynamics (6) are derived; however, 

subpopulation models require the extra consideration that sub-

populations can affect each other as well. In other words, the 

population dynamics (6) can be seen as a metapopulation mod-

el with M 1=  subpopulation. The infection rate ji��  captures the 

effect that subpopulation j  has on subpopulation .i  Note that it 

is not required that ji ij� �=� �  nor does it make sense to. Since 

subpopulations can have different numbers of people, it is rea-

sonable to think that one subpopulation i  can affect another 

subpopulation j  more than j  can affect .i  Letting xi  denote 

the fraction of individuals in subpopulation i  that are infected, 

the dynamics of the metapopulation model can be described by

 ( ) .x x x x1i i i ji
j

M

j i
1

d b=- + -
=

l lo �  (S1)

The original N-dimensional system has now been reduced to 

M-dimensional. In addition to the size reduction, it might make 

more sense to begin by considering a metapopulation model 

instead of the original network model. Properly defining the full 

network SIS dynamics (9) requires parameters that describe 

the natural recovery rates and interconnections of all individuals 

within the population. Instead, it is more reasonable to believe 

that these parameters can be estimated for groups of people at a 

time, and a reasonable metapopulation model can be described 

with the same level of granularity. State information in the meta-

population model can be determined by looking at numbers of in-

fected individuals in a given subpopulation compared to the total 

numbers of individuals ni  in this subpopulation. for example, a 

node , ,i M1 f! " , at the lowest level of granularity recovers the 

full network SIS dynamics with ,M N=  where each node rep-

resents a single person and links to other nodes represent the 

interactions this person has with others. On a much higher level 

with ,M N%  a single node can represent an entire city of people, 

and links to other nodes can represent the interactions this city 

has with others, for example, traffic flow between cities.

REfERENCE
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the infection rate at which a node i  is affected by an infected 
node j  is given by 0ij 2�  if ( , ) .i j E!  For simplicity, let 

0ij� =  if ( , ) .i j Eg  The dynamics of the SIS model in an 
arbitrary network are then described by [75]

 ( ),p p p p1i i i i j
j

N

j i
1

d b= - + -
=

o �  (9)

where [ , ]p 0 1i !  can be seen as either the fraction of the ith 
subpopulation that is infected (in the metapopulation case), or 
the probability that an individual i is infected [73], [75]–[79].

In this model, the disease-free state p 0i =  for all 
, ,i N1 f! " , is again a trivial equilibrium. In what follows, 

conditions for when this equilibrium is globally asymptoti-
cally stable are presented. Let ( , , )p p pN T

1 f=  denote the 
state vector of the system, diag , ,D N1 fd d= � � the diagonal 
matrix of recovery rates, and [ ]B ij�=  the matrix of infec-
tion rates. The dynamics (9) can then be written as

 ( ) ,p B D p h= - +o  

where .h p pi i jj

N
i j1

�= -
=

�  The following result from [75], 
[76], and [80] characterizes the convergence properties of 
these dynamics.

Theorem 8: Threshold Condition  
for Heterogeneous Networks
Given the dynamics in (9), for any ( ) ,p 0 0!  the equilib-
rium p 0=)  is globally asymptotically stable if and only 
if ( ) .B D 0max #m -  Furthermore, for ( ) ,B D 0max 2m -  
there exists p R( , )

N
0 1!))  such that p))  is globally asymp-

totically stable.
These stability results have recently been extended to 

other, more complicated models, such as the three-state sus-
ceptible-alert-infected-susceptible (SAIS) model [81], the 
four-state generalized susceptible-exposed-infected-vigilant 

Networked Mean-Field Approximations

T he method of going from a stochastic model to a deterministic 

mean-field approximation is certainly not one that should be 

overlooked. The derivations of these approximations, their accu-

racy, and they say about the original stochastic models is an area 

of research all by itself.

The following exposition briefly reviews how to go from the 

stochastic model (7) to the deterministic one (8). recall the sto-

chastic model

:

:

with rate ,

with rate .

X

X

X0 1

1 0

i

i

j
j N i

"

"

�

�
!

�

Given the entire state ( )X t  at some time ,t  the probability of 

state i  at a future time t t tT= +�  for small tT  is given by

( ( ) | ( ) , ( )) ( ),

( ( ) | ( ) , ( )) ( ),

( ( ) | ( ) , ( )) ( ) ( ),

( ( ) | ( ) , ( )) ( ) ( ) .

P X t X t X t o t
P X t X t X t t o t
P X t X t X t X t t o t

P X t X t X t X t t o t

t0 1

1 1 1

1 0

0 0 1

i i

i i

i i j
j

i i j
j N

N i

i

T
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T T

T T

Td

d

b

b

= = = +

= = = - +

= = = +

= = = - +
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!

�

�

�

�

�

�

as tT  goes to zero in these forward Kolmogorov equations, the 

exact dynamics of the expectation can be written as

[ ]
( ) ( )

[ ] ( ) ( ) .

dt
dE X E X X t

E X E X X t

1

1

i
i j

j

i i j
j

N

N

i

i

d b

d b

=- + -

=- + -

!

!

;

;

E

E

�

�

The complication now comes from the term [ ]E X Xi j  relating the 

covariance of the random variables Xi  and Xj  with their inde-

pendent probabilities. The mean-field approximation (8) (and 

similar ones for different variations of the stochastic model) is 

then obtained by assuming that [ ] [ ] [ ]E X X E X E Xi j i j=  for all .i j!  

In other words, it is assumed that all the random variables have 

zero covariance.

unfortunately, it is not necessarily true that [ ]E X Xi j =  

[ ] [ ],E X E Xi j  which means that for any fixed population with a 

stochastic model, the deterministic approximations studied are 

just that—approximations. Naturally, this begs the questions of 

how accurately the approximations describe their stochastic 

counterparts.

although the deterministic models only approximate the ex-

pected values ,pi  it has actually been shown that these are upper 

bounds on the actual probabilities [72], [73], [78] (this bound is es-

sentially found by showing that [ ]E X X 0i j $  for all i j! ). fortunate-

ly, this bound has positive implications on attempting to control the 

underlying stochastic process by using the deterministic mean-field 

model. by stabilizing the deterministic approximations, claims like 

the ones presented in remark 7 can be made. More specifically, if 

it can be guaranteed that the disease-free equilibrium of the deter-

ministic model is globally asymptotically stable, then the stochastic 

system will reach the disease-free absorbing state in sublinear time 

(with respect to the size of the network) in expectation.

In [S2], the authors begin looking at how accurate the de-

terministic mean-field approximations are in describing the 

stochastic models, rather than just guaranteeing the upper 

bound. However, this issue is still an open problem for arbi-

trary networks.

furthermore, all works above only consider the SIS dynam-

ics. although the recent work [S3] provides this type of analysis 

for a three-state SIrS model, rigorous analysis for more compli-

cated models in general are still unsolved problems.
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(G-SEIV) model [82], and even the SI V) )  model, which allows 
for an arbitrary number of compartments or states [83].

Equipped with a basic understanding of how the SIS 
process evolves and the connections between the stochastic 
processes and their deterministic approximations as dis-
cussed in Remark 7, the remainder of this article formulates 
and studies some relevant control problems.

CONTROL Of EpIdEMICS
The previous section presented several approaches for 
modeling the dynamics of spreading processes taking 
place on arbitrary contact networks. These models were 
then analyzed, and several stability results for both the 
deterministic and stochastic cases were introduced. This 
section describes several results aimed at controlling the 
dynamics of the spreading processes.

The ultimate goal in these problems is controlling the 
stochastic network models to stop the spreading of a dis-
ease as quickly as possible. However, before getting to the 
details, a discussion on the available control levers in treat-
ing an epidemic is required. Consider the heterogeneous 
SIS dynamics (9)

 ( ),p p p p1i i i ij
j

M

j i
1

d b= - + -
=

o �  

as a metapopulation model with M  subpopulations. That 
is, each node i  is some subpopulation (such as a town) of ni  
individuals in a larger population (such as a country) of N  
individuals (see “Metapopulation Models” for further 
details). The parameters affecting the dynamics are then 
the recovery rates id  for each subpopulation and the infec-
tion rates ij�  that describe the interactions between various 
subpopulations.

The two ways to help mitigate the effects of an epidemic 
are to increase the recovery rates id  and decrease the infec-
tion rates .ij�  Increasing the recovery rate of a given sub-
population can be done by providing better treatment to 
sick individuals. For instance, allocating more resources to 
a particular subpopulation can allow that subpopulation to 
afford more doctors or better methods of treatment for 
fighting a particular disease. Decreasing infection rates can 
be done in numerous ways. Limiting traffic/travel between 
subpopulations can help decrease the infection rate. Com-
pletely quarantining a subpopulation i  is equivalent to set-
ting 0ji� =  for all j  since i  can no longer affect other 
subpopulations. Other ways of decreasing infection rates 
include milder methods of prevention, such as distributing 
masks to a population to minimize chance of infection, or 
even just raising awareness about a disease to make people 
less likely to contract the disease.

If resources are not an issue, it is intuitive that by quar-
antining everyone and treating every infected individual 
with the best possible treatment, the disease is likely to die 
out quickly. However, this solution is undesirable because 
quarantining everybody in a given population is not prag-

matic. Thus, given a fixed budget of some sort, it is impera-
tive to identify exactly which parameters are most critical 
in mitigating the effects of the disease as much as possible. 
These problems are formulated, and the current state of the 
art is discussed next.

Spectral Control and Optimization
This section presents various optimal resource allocation 
problems. More specifically, given a fixed budget, the idea 
is to optimally invest resources to best hinder the spread-
ing of a disease. Leveraging the results of Theorems 4–6 
and 8, a natural option to mitigate the effects of a possible 
epidemic is to make ( )B Dmaxm -  as small as possible.

For simplicity, consider the homogeneous SIS dynam-
ics (8) where d  and �  are fixed parameters for all nodes; 
this simplification will be relaxed later. Hence, Theorems 
4 and 6 suggest that the goal is to make ( )Amaxm  as small as 
possible, which can be achieved by modifying the net-
work structure. 

The effect of the network structure on the maximum 
eigenvalue has been studied [84] and two strategies have 
been proposed for decreasing ( ) .Amaxm  The first is to 
remove nodes from ,A  which might physically be done by 
either quarantining or immunizing certain individuals, 
making them unable to contract the disease and, perhaps 
more importantly, unable to spread it. Another way to 
reduce ( )Amaxm  is to remove links rather than completely 
removing nodes, which might physically be done by 
restricting traffic between certain cities or restricting inter-
actions between certain individuals. The caveat is that 
removing nodes or edges is likely to be costly in the real 
world. For this reason, optimal allocation solutions are 
desired in which the minimum number of nodes or links 
can be removed while still guaranteeing some level of per-
formance. The node and link removal problems of interest 
are then described as follows.

Problem 9: Optimal Node removal
Given an original graph A  and a fixed budget ,C 02  mini-
mize ( )Amaxm  by removing at most C  nodes from .A

Problem 10: Optimal Link removal 
Given an original graph A  and a fixed budget ,C 02  mini-
mize ( )Amaxm  by removing at most C  links from .A

Unfortunately, the node and link removal problems 
described above are NP-complete and NP-hard, respec-
tively [85]. As a result, several papers instead solve convex 
relaxations or propose heuristics to approximately solve 
these problems. An intuitive example is one in which the 
nodes with the highest degrees (largest numbers of neigh-
bors) are removed one by one until the budget is exhausted. 
Other heuristics are based on various network metrics, 
such as betweenness centrality [86], PageRank [87], or sus-
ceptible size [88], to decide which nodes should be removed 
first. Similarly, there are works that are concerned with 
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link removal rather than node removal [85], [89], [90]. In 
[91], the authors solve a convex relaxation of the problem 
and effectively project its optimal solution onto the origi-
nal problem.

The drawbacks of the above strategies are highlighted in 
[92], where the authors study the worst-case scenarios of 
these suboptimal strategies to show that network-based 
heuristics can perform arbitrarily poorly. Thus, it is diffi-
cult to evaluate a priori how well suboptimal solutions to 
Problems 9 and 10 will perform. Furthermore, completely 
removing nodes or even links might not be practical solu-
tions, since it would require fully quarantining certain sub-
populations or completely shutting down certain roads or 
methods of travel between various subpopulations.

Instead, consider tuning the values of the parameters id  
and ij�  in the heterogeneous network model (9) rather than 
completely changing the network structure. The authors in 
[93] formulate this problem as an optimization problem to 
minimize the steady-state infection values over heteroge-
neous recovery rates. A gradient-descent algorithm is then 
designed to find feasible local minima. Another alternative 
is to use the result of Theorem 8. In this direction, several 
works consider the minimization of ( )B Dmaxm -  under 
various constraints. The effect of minimizing this eigen-
value is to maximize the exponential decay rate of the 
system toward the disease-free equilibrium.

When tuning the spreading and recovery rates, the 
problem can be formulated as a discrete optimization prob-
lem in which these rates can only be set to a fixed number 
of feasible values. This problem has been shown to be NP-
complete in [94]. Alternatively, this problem can be relaxed 
by allowing these rates to take values in a feasible continu-
ous interval. In this case, the authors in [95] and [96] devel-
oped efficient methods for allocating resources to minimize 
the dominant eigenvalue of relevant matrices. In [97] and 
[98], the problem of minimizing ( )B Dmaxm -  is cast into a 
semidefinite program framework for undirected networks. 
In [99] and [100], this problem is solved for directed graphs 
using geometric programming, where the solution can be 
obtained using standard off-the-shelf convex optimization 
software. Furthermore, geometric programs allow for the 
simultaneous optimization over both the infection rates 
and recovery rates; see “Geometric Programming” for fur-
ther details.

In what follows, a simplified version of the optimization 
problem considered in [100] is presented, and it is shown 
how it can be reformulated as a geometric program. Con-
sider the deterministic heterogeneous SIS model (9) with 
natural recovery rates 0i i 2d d=  and infection rates 

0i i 2� �=  for all , , ,i N1 f! " ,  where ij i� �=  for j Nin
i!  

and 0ij� =  otherwise. In other words, the rate at which a 
node i  is infected is a node-dependent parameter rather 

Geometric Programming

L et ,x RN
0! 2  where , ,x x 0N1 f 2  denote N  decision variables. 

In the context of geometric programs, a monomial function 

( )xh  is a real-valued function of the form ( )xh c x x xa a
N
a

0 1 2
N1 2f=  

with c 0>0  and a Ri !  for all , , .i N1 f! " ,  a posynomial func-

tion ( )xq  is a real-valued function that is the sum of monomials, 

( ) ,xq c x x xkk

K a a
N
a

1 1 2
, , ,k k N k1 2 f=

=
�  where c 0>k  and a R,i k !  for all 

, ,i N1 f! " , and , , .k K1 f! " ,

before stating the definition of a geometric program, the fol-

lowing class of functions will be useful.

dEfINITION S1 

a function :f R RN "  is convex in log-scale if the function

 x xlog expF f=� �� � (S2)

is convex in x (where exp x indicates component-wise expo-

nentiation).

REMARk S2 

Note that posynomials (hence, also monomials) are convex in 

log-scale [S4].

a geometric program (GP) is an optimization problem of the 

form

 
imize ( )

such that ( ) , , , ,
( ) , , , ,

x
x
x

min f
q i m
h i p

1 1
1 1

x

i

i

f

f

# =

= =

 

(S3)

where f  is a function that is convex in log-scale, qi  are posynomial 

functions, and hi  are monomial functions for all .i  a comprehensive 

treatment of GPs is provided in [S5]. a GP is a quasiconvex optimi-

zation problem [S4] that can be transformed to a convex problem 

using a logarithmic change of variables ,logy xi i=  and a logarith-

mic transformation of the objective and constraint functions. The 

GP in (S3) can then be written in the transformed coordinates by

 

minimize ( )

such that , , , ,
, , , ,

y

y
y log

F
Q i m
b d i p

0 1
0 1

y

i

i
T

i

f

f

# =

+ = =

� �  
(S4)

where ( )y ylog expQ qi i=� �  and .y ylog expF f=� �� �  also, giv-

en that ,xh d x x xi i
b b

N
b

1 2
, , ,i i N i1 2 f=� �  the equality constraint above is 

obtained, where , , .b b b, ,i i N i1 f= � �

Since xf� � is convex in log-scale, yF� � is a convex function. 

furthermore, since qi  is a posynomial (and therefore convex in 

log-scale), Qi  is also a convex function, which shows that (S4) 

is a convex optimization problem in standard form and can be 

efficiently solved in polynomial time [S4].
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than an edge-dependent one; this is relaxed in [101]. The 
recovery rate id  can be increased up to some maximum 

i i2d d  for a cost. Alternatively, the infection rate i�  can be 
decreased down to some minimum i i1� �  for another 
cost. The control parameters are then given by id  and ,i�  
where i i i# #d d d  and .i i i##� � �

The cost functions describing the associated cost to 
increase id  and decrease i�  are given by ( )gi id  and ( ),fi i�  
respectively. In this context, given a fixed budget ,C 02  
the goal is to minimize ( )B Dmaxm -  while satisfying the 
constraint that the total cost does not exceed the given 
budget. This problem is formally stated below.

Problem 11: budget-Constrained allocation 
Given a fixed budget ,C 02
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( ) ( ) ,

,
.
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Note that solving Problem 11 is not trivial since the 
objective function (maximum eigenvalue) is not necessarily 
convex. However, the following result guarantees that, 
under mild assumptions on the cost functions, this prob-
lem can be solved exactly by rewriting it as a geometric 
program, which can be efficiently solved (in polynomial 
time) using standard off-the-shelf convex optimization 
software. See [100] for further details on this equivalence.

Theorem 12: Solution to budget-Constrained  
allocation Problem 
Problem 11 can be solved by solving the following auxiliary 
geometric program
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(10)

for all , , ,i N1 f! " ,  with max j j2� �  and ( ) ( ),g gj j j j� � �= - u� �  
where i�

)  and i i� � �= -) )u  solve Problem 11 with rate 
( ) ,B Dmax #� � �- -)  where the superscript ) corresponds 

to the optimal solution of (10).
Aside from the discussed SIS model, other works have 

also applied these ideas to more general models. The au-
thors in [102] formulated the semidefinite program for a 
three-state SAIS model developed in [81], where the con-
cept of alertness against a possible epidemic is also mod-
eled. A more general four-state SEIV model is considered in 

[103], for which the authors develop equivalent geometric 
programs to optimize the dominant eigenvalue over vari-
ous parameters of the model simultaneously.

These types of optimal allocation strategies have been 
recently compared to fair strategies in [104], where resources 
must be allocated evenly across all nodes, to show their 
effectiveness in targeting resources rather than evenly 
spreading them.

However, there are still some drawbacks of these spec-
tral control approaches that need to be addressed before 
their solutions can be fully taken advantage of in weaken-
ing the impact of diseases in the future. The first main 
drawback is that they do not take into account the current 
state of the system. This shortcoming means that even 
nodes that are not at immediate risk of being infected might 
be allocated resources to raise their recovery rates or 
decrease their infection rates. Second, solving these prob-
lems exactly requires a great deal of knowledge. In addition 
to knowing the natural recovery rates and infection rates, 
exact knowledge of the entire graph is also assumed, which 
is unlikely. Third, these are centralized solutions that may 
take a long time to compute. Although some variants of 
this problem, as discussed above, can be solved efficiently 
(in polynomial time with respect to the size of the network), 
computing solutions for large networks can still be a com-
putational burden. Lastly, it is also assumed that once the 
optimal solution is found, the recovery rates and infection 
rates can be instantaneously set to the desired values.

The current efforts to address these issues and what still 
needs to be done are discussed in the following sections. 
The next section begins relaxing the first drawback stated 
above by looking at optimal control problems with feed-
back control solutions, rather than the one-time optimal 
resource allocation solutions presented in this section.

Optimal Control
This section discusses various optimal control problems 
formulated for mitigating epidemics under the SIS and SIR 
dynamics. Because there has been only a little work done 
for the network models thus far, the classical models are 
studied first.

Classical Models
To formulate a control problem, the SIS population model 
(6) needs a slight modification to allow for a control action. 
Following [105], the original SIS population model can be 
rewritten with 1d d=  as

 ( ) ,p p p p1I I I I
1� �= - -o  (11)

where 01 2d  is the natural recovery rate of an individual. 
Assume that this system can now be controlled by increas-
ing the recovery rate of individuals in the population from 

1d  to .2 12d d  Increasing the recovery rate can be achieved, 
for instance, by allocating antidotes or providing other 
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forms of treatment to a fraction of the population. The con-
trol signal [ , ]u 0 1!  is then the fraction of the population 
that treatment is provided to. For simplicity, assume that 
the recovery rates of any number of individuals in the pop-
ulation can be changed instantaneously; this assumption 
will be relaxed later. The dynamics of the controlled SIS 
population model is then given by

 ( ) ( ) .p p p u u p1 1I I I I
1 2� � �= - - - +o � �  (12)

Applying the result of Theorem 2, the following corol-
lary is obtained for a fixed ( ) .u t u= r

Corollary 13: Population Dynamics Threshold Condition
The solution of ( )p tI  approaches zero as t " 3  for

 .u
2 1

1
$
d d

b d

-

-
r  

Since [ , ],u 0 1!r  Corollary 13 implies that if ( )/1� �-  
( ) ,12 1 2d d-  the disease is too strong and will never die out 
regardless of the chosen control. On the other hand, when 

1 $d b  the natural recovery rate is high enough to ensure 
extinction of the disease without any control action .u 0=r� �  
Otherwise, to ensure eventual extinction of the disease with 
the smallest possible fixed control signal, the control signal 
should be chosen as ( )/( ) .u 1 2 1� � � �= - -r  However, it may 
be desirable in certain cases to use more control effort, such 
that the infection dies out faster than it would naturally. For 
instance, having a population with many sick individuals 
could incur a drastic social cost that instead could have been 
offset by a smaller initial cost of treatment. This tradeoff is 
formulated as an optimal control problem next.

Let the cost of treatment be linear with the number of 
individuals treated, and similarly let the cost of infection be 
linear with the number of infected individuals. The objec-
tive function to be minimized is then given by

 ( ( ) ( )) ,J cp t d u t dtT
T I

0
#= +�  (13)

where c 02  is associated with the cost of infection, d 02  
is associated with the cost of treatment, and T 02  is the 
time horizon. Using Pontryagin’s maximum principle, it 
can be shown [105]–[107] that the optimal solution is

 ( )
for ( ) ,

[ , ] for ( ) ,
otherwise,

u t
f t
f t

0 0
0 1 0
1

2
! =) *
"

"

,

,

 

with

 ( ) ( ) ,f t p dI
2 1} d d= - +  

where }  is the costate variable with dynamics

 ( ( ) (( ) )) .c p u u1 2 1I
1 2} } b d d= - - - - +o  

It can now be shown [105] that for /( ) / ,c d2 1 1� � �-  the 
optimal solution is to initially treat the entire population 

until some time t� at which point nobody should be treated. 
For /( ) / ,c d2 1 2� � �-  the optimal solution is ( )u t 0=  for 
all [ , ] .t T0!  This bang-bang solution, with at most one 
switch, is common in similar problems. Other works with 
this same kind of solution have been studied in many vari-
ations of this problem, including considering efficiency of 
control [108] or control over both d  and �  simultaneously 
[109]. Other models have also been considered, such as the 
SIR model [110] with different incidence rates [111], [112] or 
a four-state SIRD model [113].

Although the bang-bang solution is common, it is pos-
sible to obtain different types of solutions for various for-
mulations of the optimal control problem. For example, it is 
shown in [114] and [115] that for alternative problem formu-
lations, the optimal solution may not be a bang-bang con-
troller for certain classes of cost functions. In [116], an SIR 
model with quadratic control costs over both d  and �  is 
considered. In this case, the optimal solution is again not a 
bang-bang controller. A four-state SIRC model, for which 
the optimal solution is again not a bang-bang controller, is 
considered in [117].

Thus far it has been assumed that the control signals can 
be instantaneously set to their desired values. Other works 
consider the case in which the rate of the control signal (its 
time derivative) can be controlled instead [33], [34], [118], 
[119]. The technical details of these works have been omit-
ted because the methods are similar to the example pre-
sented above. It turns out that the results from these works 
often admit bang-bang controllers with at most one switch 
as optimal solutions as well. As a final note, it is acknowl-
edged that in certain contexts it may be desirable to maxi-
mize the impact of a spreading process (for instance a viral 
marketing campaign) [112], [120] rather than minimizing it.

Network Models
As mentioned before, the population models are quite 
crude because they often lump an entire population’s state 
into just a few numbers. Instead, network models allow 
each individual in a network to have its own state, which 
provides a more accurate description of the global state of 
the system. However, little work has been done thus far on 
optimally controlling these processes on arbitrary net-
works. Three relevant papers that consider this problem in 
the context of networks are [107], [121], and [122]. Before dis-
cussing these works, this section starts by proposing an 
optimal control problem for the SIS dynamics on networks 
that has yet to be solved.

Recall the SIS network dynamics with heterogeneous 
recovery and infection rates (9). Theorem 8 shows that the 
necessary and sufficient condition for extinction is 

( ) .B D 0max #m -  In the previous section, this result was 
used as a constraint to solve one-time optimal allocation 
problems. Instead, the following problem is an optimal con-
trol problem, where the curing rates id  are allowed to vary 
over time, depending on the evolving state of the system.
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Problem 14: Optimal Control of an SIS Network 
Given a linear cost of infection ci  and control di  for all 

, , ,i N1 f! " ,  minimize

 ( ) ( ) ,J c p t d t dtT i
i

N

i i i
T

10
d= +

=

e o/#  (14)

subject to the dynamics (9) and ( ) [ , ]ti !d d d  for some 
0 1 1d d  for all [ , ] .t T0!

Problem 14, along with most of its variations, is cur-
rently an open problem. Variations include problems 
similar to the optimal control problems for determinis-
tic population models discussed earlier, such as control 
over infection rates, noninstantaneous control, or dif-
ferent objective functions. The only work known to 
have tackled this problem is [122], where the authors 
study the linearization of (9) around the disease-free 
equilibrium and showed, for the linear dynamics, that 
the optimal solution is a bang-bang controller with at 
most one switch, similar to many results obtained for 
the population models. However, the connection with 
this optimal solution to the one of the original problem 
is unclear.

Although Problem 14 is still an open problem for the SIS 
dynamics, a closely related problem has been solved in the 
context of containing computer viruses [107], [121]. A sim-
pler version of the problem originally posed in [107] is pre-
sented here. Consider the dynamics
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where, as before, piS  and piI  are the fraction of a subpopula-
tion that are susceptible and infected, respectively. Then, 
p p p1i
R

i
S

i
I= - -  is the fraction of individuals who are 

removed. This fraction refers to individuals who are 
immune from the infection, either from being vaccinated or 
recovered from the disease and no longer susceptible to it. 
Additionally, ui  is the control that dictates the rate at which 
susceptible and infected individuals become removed.

Problem 15: Optimal Control of an SIr Network for 
Malware epidemics 
Given a linear cost of infection ,ci  control hi1  and ,hi2  and 
benefit of recovery i,  for all , , ,i N1 f! " ,  minimize

 ( ) ,J p c p p h u p p p h u dtT
i

N

i i
R

i i
I

i
R

i i i
R

i
S

i
I

i i
T

1

1 2

0
,= - + + + +

=

e o/#  (16)

subject to the dynamics (15) and ( ) [ , ]u t u0i i!  for some 
u 0i 2  for all [ , ] .t T0!

The following result follows from Pontryagin’s maxi-
mum principle [107].

Theorem 16: Optimal Control of an SIr Network  
for Malware epidemic 
There exists [ , ]T0i !x  for all i  such that the optimal control 
is given by

 ( ) for .
for ,

u t
u

t T
t

0i
i i

i

1
x # #

x
=)
r
'  

Again, Theorem 16 is consistent with many other opti-
mal control solutions for epidemics in that the optimal 
solution is a bang-bang controller with at most one switch. 
Given the freshness of these results, there are still many 
variations of this work that need to be studied. Although 
the dynamics (15) considered here are certainly similar to 
the epidemic models discussed throughout the article, they 
are not immediately applicable due to the term .R ui i  In the 
context of patching, R  is a state of nodes that have a patch 
and are thus immune, and so they can spread this patch to 
healthy and infected nodes. However, this concept does not 
seem to translate directly to epidemics; a sick person cannot 
get better by interacting with healthy people.

In many of the problems discussed above, it was assumed 
that direct control of the infection rates ij�  and recovery rates 

id  were possible. However, this simplistic scenario assumes 
that these parameters can be controlled for the entire popula-
tion instantaneously, which is unfeasible in the context of dis-
ease spreading. In an effort to address this oversimplification, 
there is a rising body of current work in which more realistic 
control actions are explored, which is discussed next.

Heuristic Feedback Policies
This section presents various models that are used to cap-
ture possible human behaviors or other countermeasures 
employed to deter the spreading of a disease. Rather than 
explicitly attempting to control the SIS dynamics as 
described above, the works discussed here are essentially 
extensions to the SIS model for which stability conditions 
are derived. The models are created by assuming various 
actions people might take, and then the closed-loop system 
stability is analyzed. More specifically, rather than sepa-
rately considering a model and control strategies, the model 
and control strategies are codeveloped to yield a sense of 
closed-loop control model. For lack of better terminology, 
these are referred to as heuristic feedback policies.

Many works consider various feedback strategies that 
determine when nodes or links should temporarily be 
removed [89], [123]–[129]. Closed-loop models are then con-
structed for the various strategies whose stability proper-
ties can then be analyzed. These strategies are often based 
on some sort of perceived risk that individuals have of 
becoming infected, causing them to either remove links to 
infected neighbors or completely remove themselves from 
the network (for example, by staying home from work or 
becoming vaccinated). This section begins by presenting 
some of these control strategies for the simpler classical 
models, which will later be extended to network models.
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Classical Models
As mentioned above, these heuristic feedback policies are 
all essentially different epidemic models for which stability 
results are obtained. As an illustrative example, consider 
[128], where, in addition to the susceptible state S  and 
infected state ,I  an additional protected state P  is intro-
duced. The protected state refers to individuals who have 
decided to immunize themselves in one way or another 
and are thus not immediately susceptible to contracting the 
disease. The model is described as follows. Letting Yi  be 
the number of infected neighbors a susceptible node i  has 
in a given graph, node i  transitions from the susceptible 
state S  to the infected state I  with rate .Yi�  However, a 
node in the protected state P  transitions to the infected 
state with rate ,Yi0�  where 0 1� �  captures the decreased 
risk of infection due to being protective or alert. A type of 
control is then to decide how susceptible individuals tran-
sition to the protected state. Finally, as in the normal SIS 
model, individuals who are infected naturally recover to 
the susceptible state with a natural recovery rate .d  Figure 5 
shows the interactions of this three-state SPIS model. The 
authors then consider the extension of the SIS population 
dynamics (5) (by assuming a complete network topology, 
meaning all individuals are equally likely to affect one 
another) to include the protected state
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where ( )f $  and ( )g $  are functions that determine how sus-
ceptible individuals are protecting themselves. Recall that 
pS  corresponds to the fraction of individuals in a popula-
tion who are in the susceptible state with pI  and pP  defined 
similarly for the infected and protected states, respectively. 
As in the case of the deterministic SIS population dynamics 
(5), one of these equations is redundant and can be removed 
by using p p p 1S I P� � �  because the population size is 
constant. This model is referred to as the three-state sus-
ceptible-protected-infected-susceptible (SPIS) model.

The authors then explore various strategies for design-
ing f  and g  and analyze the stability of the system for 
these choices. As mentioned above, this type of control 
strategy is called a heuristic feedback policy because a spe-
cific control structure is already defined and built into the 
model, rather than the objective of the work to be designing 
the controller itself. More specifically, if the functions ( )f $  
and ( )g $  can be chosen arbitrarily in the example above, the 
best thing to do is set ( )g 0$ =  and have ( )f $  be as large as 
possible, which means everybody immediately protects 
themselves. In this case, it is intuitive to think that the dis-
ease will die out quickly as well. Instead, it is useful to 
explicitly model a cost for infection and/or control as done 
in the previous section. These population models are 
extended to network models next.

Network Models
Similar to the classical models, various network models 
have been built to capture possible human behaviors or 
other countermeasures employed to deter the spreading of 
a disease on networks [130], [131]. As before, many works 
consider various feedback strategies that determine when 
nodes or links should temporarily be removed [20], [132]–
[135]. Closed-loop models are then constructed for the vari-
ous strategies whose stability properties can then be 
analyzed. These strategies are developed in the same way 
as in the classical models case.

The model considered next can be seen as a network 
extension of the three-state SPIS population model (17) 
presented in [128] and is similar to the three-state SAIS 
model presented in [81] where the authors introduce an 
alert state ,A  which is similar to the protected state P  con-
sidered here. This state captures the possibility of human 
behaviors and actions lowering the chance of contracting 
a disease. For simplicity, consider homogeneous parame-
ters, meaning the recovery and infection rates are set the 
same at all nodes. The deterministic version of this model 
is then
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figure 5 a three-state compartmental susceptible-protected-in-
fected-susceptible model. an individual i  in the infected state I  
transitions to the healthy or susceptible state S  with a natural re-
covery rate .d  an individual in the susceptible state transitions to 
the protected state P  at a rate ( , , )f p p pi

PS I  that depends on the 
entire network state and to the infected state at a rate Yi�  propor-
tional to the number of infected neighbors Yi  possessed by node i. 
an individual in the protected state transitions to the infected state 
at a rate ,Yi0�  where 0 1� �  captures the fact that this individual is 
in a less susceptible state than normal, for instance, due to behav-
ioral changes or vaccination.
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where ( , , )f p p pi
S I P  is a function that determines how sus-

ceptible individuals are protecting themselves. Conditions 
can then be derived for the parameters and the function f  
such that the disease-free equilibrium is globally asymp-
totically stable [81]. The authors in [136] then treat the 
design of this function f  as an optimal information dis-
semination problem. However, as in the population dynam-
ics case, these are structured methods of control that are 
ultimately built into the models.

A critical shortcoming of these types of solutions is that 
they are too specific. Often times a specific model with a 
specific control structure is developed and studied. Unfor-
tunately, it is often unclear what type of spreading process 
each model is good for describing, if any. In [137], the author 
does a great job highlighting the fact that there are far too 
many slight variations of existing models. This section 
closes with a small anecdote from the epilogue of [137], in 
which the author effectively created 105 different models:

In the book [sic], A Thousand and One Nights, Scheher-
ezade had to entertain King Shahriyar with a new 
story each evening in order to avoid being killed. If 
they were mathematical biologists and she had only 
to present one new epidemiological model each night 
to entertain him, then she could have survived each 
night for at least 270 years. Of course, the King would 
probably have become disenchanted by the “new” 
models if they were only very slight variations on 
previous models and would have killed Scheher-
ezade. Similarly, referees (the Kings) might become 
disenchanted if the papers which they receive con-
tain models which are only slight variations on pre-
vious models. Thus I suggest that we as modelers 
and mathematicians should be cautious and not 
assume that every mathematical analysis of a slightly 
different model is interesting.
This anecdote helps instill the idea that not all epidemic 

models are useful. This issue and other technical chal-
lenges are discussed in the following section.

fuTuRE OuTLOOk
The previous section provided a high-level overview of 
the current state of the art involving the control of epi-
demics. However, there are still many shortcomings of the 
results presented that need to be taken into account to 
take full advantage of their proposed solutions. This sec-
tion highlights several of the main research challenges, 
how they are currently being addressed, and what still 
needs to be done.

All Control Methods Discussed So Far Have  
Been for Deterministic Models
Ultimately, the desired goal is controlling the original sto-
chastic epidemic models from which the deterministic 
models are derived. Results like Theorems 4 and 5 help 
draw connections between the two, but these connections 

have only been made for simple cases so far. Furthermore, 
while these results help justify how using spectral control 
and optimization methods for deterministic models trans-
late to the original stochastic models, it is unclear how the 
optimal feedback control solutions found for deterministic 
models relate to their stochastic counterparts.

Only a few works are available on controlling epidemic 
processes on networks for the original stochastic models. 
In [68], the authors consider the SIS model with a simple 
heuristic control law where the curing rates id  for each 
node are proportional to the number of neighbors. The 
authors are then able to show that, on any graph with 
bounded degree, this policy can achieve sublinear expected 
time to extinction with a budget proportional to the number 
of nodes in the network. A drawback of the above method 
is that it does not take into account the current state of the 
system. This means that nodes with no infected neighbors 
may be assigned high curing rates. Instead, [138] uses a 
heuristic PageRank algorithm to allocate curing resources 
given a fixed budget, based on the initial condition of 
infected nodes. The authors are then able to provide proba-
bilistic upper bounds on the expected extinction time. 
More recently, [139] proposes an algorithm for which the 
expected time to extinction is sublinear using only a sub-
linear budget (in the number of nodes) for graphs satisfy-
ing certain technical conditions. A similar problem is 
considered in [140], for which various algorithms are devel-
oped using a Markov decision process framework.

All Control Methods Discussed So Far  
Have Admitted Centralized Solutions
Having only centralized solutions is problematic since 
human contact networks can be massive in practice, and it 
may not be computationally possible to solve these prob-
lems in a centralized setting. In this direction, distributed 
allocation and control strategies are a useful alternative. 
Again, there are only a few recent works that have looked 
at this problem [107], [141], [142]. As more work in optimiza-
tion and control of epidemic processes is done, distributed 
versions of these algorithms are desirable.

All Control Methods Discussed So Far Have  
Assumed There Are No Uncertainties
Acknowledging uncertainties is an important issue in the 
context of epidemics. Throughout all the modeling, analy-
sis, and control solutions presented thus far, perfect knowl-
edge of everything, including recovery rates, state 
information, and network structures, has been assumed. 
These are clear oversimplifications because, in practice, 
these parameters are not readily available and must be esti-
mated in one way or another. A review of analysis and 
approximation techniques considering uncertainties in the 
spreading parameters is provided in [143].

In the context of control, far less work has been done 
for the case where the topology is unknown. Observed 
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infection data of a discrete-time SIS process is used in 
[144] to estimate the network topology. Optimization and 
control methods can then be applied to the estimated 
topology; unfortunately, it is unclear how well these solu-
tions will perform on the actual topology. Instead, a data-
driven approach to optimally allocate resources has 
recently been studied in [145], where only empirical data 
about the spreading of a disease is available. In this work, 
the authors assume that the spreading rates are unknown. 
Alternatively, the authors assume that the responsible 
health agency has access to historical data describing the 
evolution of the disease in a network during a relatively 
short period of time. In this context, the authors in [145] 
construct a set of possible parameters that are consistent 
with the observed data and propose a robust optimization 
framework to allocate resources based on this set.

Another issue related to assuming perfect knowledge is 
assuming that the recovery and infection rates can be set to 
any desired values. To deal with this additional issue, stud-
ies are needed into how various control solutions perform 
when these rates cannot be set exactly.

The assumption of being able to observe exact state data 
is an issue that has received little to no attention in the con-
text of control. This assumption does not apply to the spec-
tral optimization or heuristic feedback control methods but 
certainly affects the optimal control methods.

More General Epidemic Models Are Needed
Although there are many works on modeling beyond the 
SIS and SIR dynamics on which this article has focused, 
there is still a lack of generalized models. More specifically, 
a majority of works that studies spreading processes begin 

with a single model with a fixed number of states and pos-
sible interactions. Many of these models are created by first 
looking at empirical data of a spreading process like AIDS 
[146] or a computer virus [69] and then determining what 
type of model and how many states should be used to cap-
ture its behavior. Instead, few works propose more general 
models with arbitrarily many states or layers on which the 
disease can spread [40], [83], [147]. The further develop-
ment, analysis, and control of these generalized models can 
allow rapid prototyping of models for spreading processes 
that might not even exist today, in addition to completely 
generalizing the myriad specific models available today.

All models discussed in this article so far have only con-
sidered the spreading of a single disease or process. Extend-
ing existing models to capture multiple diseases that 
coevolve in a network has recently been gaining attention 
[148]–[154]. These diseases are often assumed to be mutu-
ally exclusive, meaning an individual can only be infected 
with one type of infection at a time. While it is discussed 
here in the context of disease and epidemics, these models 
are more aptly used in studying belief propagation or prod-
uct adoption. For instance, the mutual exclusion of infec-
tions is useful in modeling competition in politics (such as 
Democrats versus Republicans) or competition in a market-
place (such as iPhone versus Droid versus Galaxy). A com-
petitive model on arbitrary networks that was studied in 
[155] and further analyzed in [156] is presented next.

The competitive three-state, two-infection SI SI S1 2  
model is described as follows. Let Yi

1  be the number of 
neighbors of node i  infected by the first disease .I1  A node 
i  in the susceptible state S  transitions to the infected state 
I1  with rate .Yi i

1 1�  Similarly, a node i  in the susceptible 
state transitions to the infected state I2  with rate .Yi i

2 2�  
Each node has its own recovery rate for each disease given 
by i

1d  and .i
2d  For example, a node i  in the infectious state 

I1  recovers to the susceptible state at rate .i
1d  Figure 6 shows 

the interactions of this three-state SI SI S1 2  model.
The deterministic version of this model is
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For simplicity, this model has been presented assuming 
that both infections evolve over the same graph structure 

.A  Instead, [155] and [156] provide analysis for these 
dynamics over possibly different topologies. A few recent 
works have studied the problem of controlling multiple 
diseases in different scenarios [156]–[158]; however, these 
works are still in their infancy and there are still many 
open problems left to be solved.

All the works about epidemics on networks discussed in 
the article so far have assumed a fixed graph structure. 
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figure 6  a three-state compartmental SI SI S1 2  model for two dis-
eases. an individual i can be in the healthy or susceptible state S 
or infected by one of two possible infections, but not both simulta-
neously. an individual in the first infectious state I1  recovers to the 
susceptible state at a natural recovery rate .i

1d  Similarly, an indi-
vidual i in the second infectious state I2  recovers at a natural recov-
ery rate .i

2d  an individual in the susceptible state transitions to the 
infectious state Ik  at rate Yi

k
i
k�  for { , },k 1 2!  where Yi

k  is the 
number of neighbors of i that are in infectious state .Ik  The param-
eter i

k�  captures the effect that neighbors of node i has on it for 
infection .Ik
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However, this assumption may not be fair depending on 
the time scale of a spreading process. For instance, in the 
context of diseases, the network of contacts in a human 
population is constantly changing. Hence, a time-varying 
network model might be more appropriate, albeit more 
challenging, to analyze. At the time of this writing, there is 
still only a little bit of work analyzing these types of time-
varying models, which seems to be a promising new 
branch of epidemics research [159]–[161]. As with optimal 
control, similar problems have been studied in different 
contexts such as information dissemination in mobile net-
works [162], but far fewer has been considered in the con-
text of epidemics thus far.

In addition to the models presented in this article, it is 
worth mentioning that many works present the same types 
of models from a game-theoretic perspective [130], [131], 
[163]–[165]. Game-theoretic formulations of epidemic mod-
els is another space in which there is not yet a significant 
amount of study, but some seminal works have shown its 
usefulness in modeling spreading processes, especially in 
the context of control and optimization [166]–[169].

CONCLuSIONS
This article has reviewed and analyzed some of the most 
popular models studied in epidemiology. In particular, 
deterministic and stochastic models in the context of 
both population and networked dynamics have been pre-
sented and analyzed. Many results concerning the opti-
mization and control of epidemics have been discussed, 
and a number of new avenues for further exploration in 
this field has also been identified. Although the focus of 
this article was on disease and epidemics, it is worth reit-
erating that the same mathematical tools and results 
apply almost directly to many different spreading pro-
cesses including information propagating through a 
social network, malware spreading in the World Wide 
Web, or viral marketing.

Despite the vast literature studying the problems dis-
cussed in this article, there are many interesting control 
problems left to be solved, particularly those in the context 
of networked dynamics. Plenty of work is still left to be 
done to really harness the power of these results and make 
a real societal impact, especially in understanding how to 
effectively control these processes on complex networks. In 
this respect, control engineers truly have much to offer in 
this reemerging field of research.
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